Concept explainers
Name the three main driveline components that are added to a RWD vehicle to make it a 4WD vehicle.
The three main driveline components that are added to an RWD vehicle to make it a 4WD vehicle.
Answer to Problem 1SA
The three main driveline components that are added to an RWD vehicle to make it a 4WD vehicle are:
- Front differential and axle.
- Transfer case.
- Drive shaft.
Explanation of Solution
In a rear wheel drive (RWD), the axle and differential are placed on the rear side of the vehicle. When it is required to make this RWD vehicle into 4WD vehicle, there arises a need of putting a differential and accordingly axles in the front side of the vehicle also.
The transfer case is the heart of all wheel drive or 4WD type of vehicles. The transfer case receives power from the engine and transmits it to the front and rear axles with the help of drive shafts. The transfer case also serves the purpose of synchronizing the difference of rotation between front and rear wheels of the vehicles.
A drive shaft or a propeller shaft is used to connect and transmit power and torque from the engine to other parts of the drive train. In a situation when relative movement is required or the components of the drive train are difficult to connect directly due to distance, then it becomes essential to employ the drive shaft. To convert a RWD vehicle into a 4WD vehicle, a drive shaft is also needed.
Want to see more full solutions like this?
Chapter 44 Solutions
AUTOMOTIVE TECHNOLOGY (W/MINDTAP)
- Qwhat are the steps to draw failure theories on a chart paper: 1- Tresca theory 2- von Mises theory 3- Rankine theory Explain this in detailarrow_forwardA power transistor with three 0.8 mm diameter leads of a copper-silver alloy (k = 400 W/m-K) dissipates 3.5 Watts of power. The printed circuit board (PCB) on which the transistor is mounted is maintained at 30 C. The air temperature is 20 C and the heat transfer coefficient for the leads is 60 W/m² K. The length of the leads from the transistor to printed circuit board is 9.0 mm. (a) Determine the maximum lead temperature neglecting all convection effects. (b) Determine the maximum lead temperature if convection is present. T=20C h = 60 W/m²K Air Power Transistor Lead k = 400 W/m K TPCB = 30 C 9 mmarrow_forwardA window in a tall building experiences a horizontal wind flow parallel to the surface at a velocity of 8 m/s. The window measures 2 m high, 1.5 m wide and 6.5 mm thick. The transition from the building wall to the window glass surface is not smooth. The window casement that surrounds the edge of glass pane is raised 10 mm above the surface of the glass and adjacent wall structure. Inside the building, the air temperature and heat transfer coefficient for the interior surface are 21 °C and 9 W/m² K respectively. The window has a uniform thermal conductivity of 1.4 W/m K. If the outdoor air temperature is 5 °C, determine the rate of convective heat loss from the window. Develop a thermal resistance network for the window system. Please state and justify all assumptions. Neglect any conduction through the casement. Assume the following air properties: kair =0.0248 W/m K, v= 14.20 x 106 m²/s, Pr = 0.712. Outside Air u=8m/s T=5°C casement glass Inside 2 m T=21°C h=9W/m² K 6.5 mm 1.5 m…arrow_forward
- A thin electrical heater that dissipates 2 kW of thermal energy is position between two plane walls. The thickness of each wall is shown in the figure below. The thermal conductivities of sections A and B are 3 W/m C and 0.8 W/m C respectively. The electrical heater is assumed to be highly conductive (k=200 W/m C). The exterior surface of each wall experiences convective conditions as summarized below. (a) Construct the thermal circuit representing the steady state heat transfer for the system. Label all nodes, resistances and relevant terms. (b) Determine the temperate of the electrical heater. T = 50 C h = 200 W/m² C A 10 cm 6 cm B Electrical Heater T_ = 20 C h = 50 W/m² C K₁ = 3 W/m²K 0.05 cm k₁ = 0.08 W/m² Karrow_forwardI need answer with diagram and not from AIarrow_forwardOne -1/x²-10.5x+1Z 84.5 11 2x2 +212 +382 2 2 -23.500 81 4th Year 24. (i) Derive a mathematical model for the mechanical system represented below, where the input Automation and Control is the Force F, and the output is the displacement x. (ii)Determine the general transfer function of the system given that the input is an impulsive force of 10N and the following constants (iii\Determine the output as a F(s) (iii) What is the output x as a function of time? EX Rnd 0 COM 7 4 Ran# Ra 25 (N/m) 5 kg 30 (N.s/m) Ans(i) ref notes 2 2 s² + 6s+5 25. A control system has a forward path transfer function of (111) (iii) x(t) = 0.5(e-t-e-5t) 2 and a negative feedback loop four S+2 with a transfer function 4. What will be the (time) response of the system to a unit step input? Ans: 0.2(1-e-10) 10 26. A control system has a forward path transfer function of and a negative feedback loop S+3 with a transfer function 5. What will be the (time) response of the system to a (a) unit impulsive input? (b) a…arrow_forward
- four One -H = 2x2 +212 +382 2 x² -23.5x + x37 84 x -10.5x+h 84.5 Automation and Control 4th Year 24. (i) Derive a mathematical model for the mechanical system represented below, where the input is the Force F, and the output is the displacement x. (ii)Determine the general transfer function of the system given that the input is an impulsive force of 10N and the following constants (iii\Determine the output as a F(s) (iii) What is the output x as a function of time? 25 (N/m) F 5 kg 30 (N.s/m) 2 Ans(i) ref notes (iii) (iii) x(t) = 0.5(e-t-e-st) 2 and a negative feedback loop S+2 s² + 6s+5 25. A control system has a forward path transfer function of with a transfer function 4. What will be the (time) response of the system to a unit step input? CON 4 1 Rnd Rane R 0 EL SALVADOR Ans: 0.2(1-e-10) 10 s+3 and a negative feedback loop 26. A control system has a forward path transfer function of with a transfer function 5. What will be the (time) response of the system to a (a) unit impulsive…arrow_forwardfind the temperature distribution of the beam shown below, take &=o.!! and L-1m- of C" loko -10C" 30 со h2 5 Kwlm²-ko T = 250° q=30twarrow_forwardQ1/Create an estimated (S-N) diagram and define its equation for an axial fully reversed loaded steel bar. Its cross section shown in figure (1). Determine the life in cycle that can be expected if the alternating stress is (127Mpa). The bar surface finch is hot rolled. The operating temperature is (506 Co) and (du-577 Mpa). 120 mm. 4arrow_forward
- Q4/ Find using a proper design theory the safety factor (N) based on point A for the circular cantilever rod of a diameter (94 mm) shown in figure 3. Knowing that the rod is made of Stainless Steel Type 304-cold rolled, Which is subjected to a force (F= 6.4 kN) inclined with y-axis by 0-72° and to a torque (T= 265π N. m). Fig.3 L1=3.2 cm L2= 3.6 cm F Z Y X (15 Marks) Q5/ Create an estimated S-N diagram and define its equation for an aluminum rectangular bar, shown in figure 4 below, with a (out=342Mpa). The bar is loaded in a fully reversed bending and the bar radius is 12 mm. Determine also the corrected fatigue strength at (N=2.3* 107 cycles). Knowing that the bar surface finch is ground, the operating temperature is 155 C°, and Take a 99.99% reliability factor. Fig. 4 h=5.6 cm Head of the Department: Dr. Deyaa Hassan Jawad Al-Jashami b=4 cm *** Best of Luck *** (15 Marks) Examiner: Ass. Lect. Ahmed A. Tomanarrow_forwardUniversity of Babylon Collage of Engineering\Al-Musayab Department of Automobile Engineering Under Grad/Third stage Notes: 1-Attempt Four Questions. 2- Q4 Must be Answered 3-Assume any missing data. 4 تسلم الأسئلة بعد الامتحان مع الدفتر Subject: Mechanical Element Design I Date: 2022\01\25 2022-2023 Time: Three Hours Course 1 Attempt 1 Q1/ Design a thin cylindrical pressure tank (pressure vessel) with hemispherical ends to the automotive industry, shown in figure I below. Design for an infinite life by finding the appropriate thickness of the vessel to carry a sinusoidal pressure varied from {(-0.1) to (6) Mpa}. The vessel is made from Stainless Steel Alloy-Type 316 sheet annealed. The operating temperature is 80 C° and the dimeter of the cylinder is 36 cm. use a safety factor of 1.8. Fig. 1 (15 Marks) Q2/ Answer the following: 1- Derive the design equation for the direct evaluation of the diameter of a shaft to a desired fatigue safety factor, if the shaft subjected to both fluctuated…arrow_forwardwhat is the scientific interpetation of all of what comes: 1- axial loading 2- Direct shear loading 3- Torsional loading 4. Bending load 4- Explain it in detail and how to use it to solve mechanical design Problemsarrow_forward
- Automotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage Learning