(a)
The energy needed to transfer an electron from
(a)
Answer to Problem 4P
The energy needed to transfer an electron from
Explanation of Solution
The energy needed to transfer an electron from
The ionization of energy of
Write the expression that describes the ionization of K.
Here,
Write the expression that describes the ionization of I.
Here,
Add equation (I) and (II) to get activation energy.
Rearrange above equation to get activation energy.
The above relation indicates the
Conclusion:
Therefore, the energy needed to transfer an electron from
(b)
The values of
(b)
Answer to Problem 4P
The values of
Explanation of Solution
Write the expression of Lennard-Jones potential.
Here,
Differentiate above equation.
Write the value of derivative of potential at equilibrium distance.
Here,
Use equation (III) in equation (II) to get value of
Rearrange above equation to get
It is given that
Substitute
Conclusion:
Substitute
Substitute
Therefore, the values of
(c)
The force needed to break up KI molecule.
(c)
Answer to Problem 4P
The force needed to break up KI molecule is
Explanation of Solution
Write the expression for the force of attraction between the atoms.
Use equation (II) in equation (VI) to get
Write the expression for the maximum force.
Here,
Put equation (VII) in equation (VIII).
Use equation (VIII) in equation (IX) to get
Conclusion:
Substitute
Therefore, the force needed to break up KI molecule is
(d)
The force constant for small oscillations about
(d)
Answer to Problem 4P
The force constant for small oscillations about
Explanation of Solution
Rewrite expression of Lennard-Jones potential.
Substitute
Substitute
Expand above equation using binomial expansion.
Simplify above equation up to second order terms of
Use equation (V) in above equation.
The above equation is similar to equation of potential of small oscillations.
Write the general potential equation.
Compare above equation with (X) to get
Conclusion:
Substitute
Therefore, the force constant for small oscillations about
Want to see more full solutions like this?
Chapter 43 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- No chatgpt plsarrow_forwardhelp me with the experimental set up for the excel i did. the grapharrow_forwardWhich of the following best describes how to calculate the average acceleration of any object? Average acceleration is always halfway between the initial acceleration of an object and its final acceleration. Average acceleration is always equal to the change in velocity of an object divided by the time interval. Average acceleration is always equal to the displacement of an object divided by the time interval. Average acceleration is always equal to the change in speed of an object divided by the time interval.arrow_forward
- The figure shows the velocity versus time graph for a car driving on a straight road. Which of the following best describes the acceleration of the car? v (m/s) t(s) The acceleration of the car is negative and decreasing. The acceleration of the car is constant. The acceleration of the car is positive and increasing. The acceleration of the car is positive and decreasing. The acceleration of the car is negative and increasing.arrow_forwardWhich figure could represent the velocity versus time graph of a motorcycle whose speed is increasing? v (m/s) v (m/s) t(s) t(s)arrow_forwardUnlike speed, velocity is a the statement? Poisition. Direction. Vector. Scalar. quantity. Which one of the following completesarrow_forward
- No chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward3.63 • Leaping the River II. A physics professor did daredevil stunts in his spare time. His last stunt was an attempt to jump across a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at 53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower than the top of the ramp. The river itself was 100 m below the ramp. Ignore air resistance. (a) What should his speed have been at the top of the ramp to have just made it to the edge of the far bank? (b) If his speed was only half the value found in part (a), where did he land? Figure P3.63 53.0° 100 m 40.0 m→ 15.0 marrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill