Concept explainers
Calculus Let
Example 5 Subspaces of Functions (Calculus)
Let
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Bundle: Elementary Linear Algebra, Loose-leaf Version, 8th + WebAssign Printed Access Card for Larson's Elementary Linear Algebra, 8th Edition, Single-Term
- Let V be the set of all positive real numbers. Determine whether V is a vector space with the operations shown below. x+y=xyAddition cx=xcScalar multiplication If it is, verify each vector space axiom; if it is not, state all vector space axioms that fail.arrow_forwardGive an example showing that the union of two subspaces of a vector space V is not necessarily a subspace of V.arrow_forwardProofProve in full detail that M2,2, with the standard operations, is a vector space.arrow_forward
- Which vector spaces are isomorphic to R6? a M2,3 b P6 c C[0,6] d M6,1 e P5 f C[3,3] g {(x1,x2,x3,0,x5,x6,x7):xiisarealnumber}arrow_forwardDetermine whether the set R2 with the operations (x1,y1)+(x2,y2)=(x1x2,y1y2) and c(x1,y1)=(cx1,cy1) is a vector space. If it is, verify each vector space axiom; if it is not, state all vector space axioms that fail.arrow_forwardFind a basis for R3 that includes the vector (1,0,2) and (0,1,1).arrow_forward
- Calculus Let B={1,x,ex,xex} be a basis for a subspace W of the space of continuous functions, and let Dx be the differential operator on W. Find the matrix for Dx relative to the basis B.arrow_forwardCalculus Use the matrix from Exercise 45 to evaluate Dx[4x3xex]. 45. Calculus Let B={1,x,ex,xex} be a basis for a subspace W of the space of continuous functions, and let Dx be the differential operator on W. Find the matrix for Dx relative to the basis B.arrow_forwardProof Prove that if S1 and S2 are orthogonal subspaces of Rn, then their intersection consists of only the zero vector.arrow_forward
- Let f1(x)=3x and f2(x)=|x|. Graph both functions on the interval 2x2. Show that these functions are linearly dependent in the vector space C[0,1], but linearly independent in C[1,1].arrow_forwardLet A and B be square matrices of order n satisfying, Ax=Bx for all x in all Rn. a Find the rank and nullity of AB. b Show that matrices A and B must be identical.arrow_forwardCalculus Let B={1,x,sinx,cosx} be a basis for a subspace W of the space of continuous functions and Dx be the differential operator on W. Find the matrix for Dx relative to the basis B. Find the range and kernel of Dx.arrow_forward
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage