University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
14th Edition
ISBN: 9780134265414
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 43, Problem 43.36E
To determine
The number of chest x-rays that would deliver the same total amount of energy to the body of the person taking one whole-body scan.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
It has become popular for some people to have yearly whole-body scans (CT scans, formerly called CAT scans) using x rays, just to see if they detect anything suspicious. A number of medical people have recently questioned the advisability of such scans, due in part to the radiation they impart. Typically, one such scan gives a dose of 12 mSv, applied to the whole body. By contrast, a chest x ray typically administers 0.20 mSv to only 5.0 kg of tissue. How many chest x rays would deliver the same total amount of energy to the body of a 75 kg person as one whole-body scan?
Four radiation doses are as follows: Dose A is 0.10 Gy with an RBE of 1, dose B is 0.20 Gy with an RBE of 1, dose C is 0.10 Gy with an RBE of 2, and dose D is 0.20 Gy with an RBE of 2. a. Rank in order, from largest to smallest, the amount of energy delivered by these four doses. b. Rank in order, from largest to smallest, the biological damage caused by these four doses.
A 73.0 kg person experiences a whole-body exposure to alpha radiation with an energy of 1.50 MeVMeV. A total of 5.40×1012 alpha particles is absorbed. Use the Table of Relative biological effectiveness (RBE) for several types of radiation.
A) What is the absorbed dose in rad? Express your answer in rads.
B) What is the equivalent dose in rem? Express your answer in rem.
C) If the source is 0.0100 gg of 226Ra (half-life 1600 years) somewhere in the body, what is the activity of the source? Express your answer in decays per second.
D) If all the alpha particles produced are absorbed, what time is required for this dose to be delivered? Express your answer with the appropriate units.
Chapter 43 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Ch. 43.1 - Prob. 43.1TYUCh. 43.2 - Rank the following nuclei in order from largest to...Ch. 43.3 - Prob. 43.3TYUCh. 43.4 - Prob. 43.4TYUCh. 43.5 - Prob. 43.5TYUCh. 43.6 - Prob. 43.6TYUCh. 43.7 - Prob. 43.7TYUCh. 43.8 - Prob. 43.8TYUCh. 43 - Prob. 43.1DQCh. 43 - Prob. 43.2DQ
Ch. 43 - Prob. 43.3DQCh. 43 - Prob. 43.4DQCh. 43 - Prob. 43.5DQCh. 43 - Prob. 43.6DQCh. 43 - Prob. 43.7DQCh. 43 - Prob. 43.8DQCh. 43 - Prob. 43.9DQCh. 43 - Prob. 43.10DQCh. 43 - Prob. 43.11DQCh. 43 - Prob. 43.12DQCh. 43 - Prob. 43.13DQCh. 43 - Prob. 43.14DQCh. 43 - Prob. 43.15DQCh. 43 - Prob. 43.16DQCh. 43 - Prob. 43.17DQCh. 43 - The most common radium isotope found on earth,...Ch. 43 - Prob. 43.19DQCh. 43 - Prob. 43.20DQCh. 43 - Prob. 43.1ECh. 43 - Prob. 43.2ECh. 43 - Prob. 43.3ECh. 43 - Prob. 43.4ECh. 43 - Prob. 43.5ECh. 43 - Prob. 43.6ECh. 43 - Prob. 43.7ECh. 43 - Prob. 43.8ECh. 43 - Prob. 43.9ECh. 43 - Prob. 43.10ECh. 43 - Prob. 43.11ECh. 43 - Prob. 43.12ECh. 43 - Prob. 43.13ECh. 43 - Prob. 43.14ECh. 43 - Prob. 43.15ECh. 43 - Prob. 43.16ECh. 43 - Prob. 43.17ECh. 43 - Prob. 43.18ECh. 43 - Prob. 43.19ECh. 43 - Prob. 43.20ECh. 43 - Prob. 43.21ECh. 43 - Prob. 43.22ECh. 43 - Prob. 43.23ECh. 43 - Prob. 43.24ECh. 43 - Prob. 43.25ECh. 43 - Prob. 43.26ECh. 43 - Measurements on a certain isotope tell you that...Ch. 43 - Prob. 43.28ECh. 43 - Prob. 43.29ECh. 43 - Prob. 43.30ECh. 43 - Prob. 43.31ECh. 43 - Prob. 43.32ECh. 43 - Prob. 43.33ECh. 43 - Prob. 43.34ECh. 43 - Prob. 43.35ECh. 43 - Prob. 43.36ECh. 43 - Prob. 43.37ECh. 43 - Prob. 43.38ECh. 43 - Prob. 43.39ECh. 43 - Prob. 43.40ECh. 43 - Prob. 43.41ECh. 43 - Energy from Nuclear Fusion. Calculate the energy...Ch. 43 - Prob. 43.43ECh. 43 - Prob. 43.44ECh. 43 - Prob. 43.45ECh. 43 - Prob. 43.46ECh. 43 - Prob. 43.47PCh. 43 - Prob. 43.48PCh. 43 - Prob. 43.49PCh. 43 - Prob. 43.50PCh. 43 - Prob. 43.51PCh. 43 - Prob. 43.52PCh. 43 - Prob. 43.53PCh. 43 - Prob. 43.54PCh. 43 - Prob. 43.55PCh. 43 - Prob. 43.56PCh. 43 - Prob. 43.57PCh. 43 - Prob. 43.58PCh. 43 - Prob. 43.59PCh. 43 - Prob. 43.60PCh. 43 - Prob. 43.61PCh. 43 - Prob. 43.62PCh. 43 - Prob. 43.63PCh. 43 - Prob. 43.64PCh. 43 - Prob. 43.65PCh. 43 - Prob. 43.66PCh. 43 - Prob. 43.67PCh. 43 - Prob. 43.68PCh. 43 - DATA Your company develops radioactive isotopes...Ch. 43 - Prob. 43.70PCh. 43 - Prob. 43.71CPCh. 43 - Prob. 43.72CPCh. 43 - Prob. 43.73PPCh. 43 - Prob. 43.74PPCh. 43 - Prob. 43.75PPCh. 43 - Prob. 43.76PPCh. 43 - Prob. 43.77PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Calculate the dose in Sv to the chest at a patient given an xray under the following conditions. The xray beam intensity is 1.50 W/m2, the area of the chest exposed is 0.0750 m2 35.0% of the xrays are absorbed in 20.0 kg of tissue, and the exposure time is 0.250 s.arrow_forwardWhat is the dose in mSv for: (a) a 0.1 Gy xray? (b) 2.5 mGy of neutron exposure to the eye? (c) 1.5 mGy of exposure?arrow_forwardHow many Gy of exposure is needed to give a cancerous tumor a dose of 40 Sv if it is exposed to acfivity?arrow_forward
- | 27. . To scan or not to scan? It has become popular for some BIO people to have yearly whole-body scans (CT scans, formerly called CAT scans), using x rays, just to see if they detect any- thing suspicious. A number of medical people have recently questioned the advisability of such scans, due in part to the radiation they impart. Typically, one such scan gives a dose of 12 mSv, applied to the whole body. By contrast, a chest x ray typically administers 0.20 mSv to only 5.0 kg of tissue. How many chest x rays would deliver the same total amount of energy to the body of a 75 kg person as one whole-body scan?arrow_forwardA 73.0 kg person experiences a whole-body exposure to alpha radiation with energy of 1.50 MeVMeV. A total of 5.40×1012 alpha particles is absorbed. Use the Table of Relative biological effectiveness (RBE) for several types of radiation. A) What is the absorbed dose in rad? Express your answer in rads. B) What is the equivalent dose in rem? Express your answer in rem. C) If the source is 0.0100 g of 226Ra (half-life 1600 years) somewhere in the body, what is the activity of the source? Express your answer in decays per second. D) If all the alpha particles produced are absorbed, what time is required for this dose to be delivered? Express your answer with the appropriate units.arrow_forwardAn x - ray technician works 5 days per week, 50 weeks per year. Assume the technician takes an average of eight x - rays per day and receives a dose of 5.0 rem/yr as a result. (a) Estimate the dose in rem per x - ray taken. (b) How does this result compare with the amount of low - level background radiation the technician is exposed to?arrow_forward
- A chest x ray uses 10 keV photons. A 60 kg person receives a 30 mrem dose from one x ray that exposes 25% of the patient’s body. How many x-ray photons are absorbed in the patient’s body?arrow_forwardDuring a 2-h period of radiation therapy, alpha radiation is deposited into a patient's body at a rate of 3.3 x 10-8 J/s. What effective dose does the 59-kg patient receive? (Units: mSv) Use the following table of RBEs. Radiation type RBE X-rays 1 Gamma rays 1 Electrons 1 Protons 2 Alpha particles 20arrow_forwardA 7. A saline solution of 24Na with an activity of 300 kBq is injected into the bloodstream of one patient. Ten hours later, the activity of one cubic centimeter of blood is 30 Bq. Calculate the patient's blood volume.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College