Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
4th Edition
ISBN: 9780132273244
Author: Doug Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 43, Problem 26P
To determine
The wavelengths of the two photons produced when an electron and a positron annihilate in a head on collision.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(II) What is the minimum photon energy needed to
produce a u*u pair? The mass of each u (muon) is
207 times the mass of an electron. What is the wavelength
of such a photon?
(6) Suppose an atom of iron at rest emits an X-ray photon of energy 64 keV. Calculate the recoil
momentum and kinetic energy for the atom. (You should look up mass for iron, and think
about whether you need to use the relativistic kinetic energy for the atom or if the classical
expression is good enough.)
(b) When ultraviolet radiation of wavelength 58.4 nm from a helium lamp is directed on to a sample ofkrypton, electrons are ejected with a speed of 1.59 × 106 m s−1. Calculate the ionisation energy ofkrypton.
Chapter 43 Solutions
Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
Ch. 43.1 - Prob. 1AECh. 43.2 - Prob. 1CECh. 43.9 - Prob. 1DECh. 43.9 - Prob. 1EECh. 43 - Prob. 1QCh. 43 - If a proton is moving at very high speed, so that...Ch. 43 - Prob. 3QCh. 43 - Prob. 4QCh. 43 - Prob. 5QCh. 43 - Prob. 6Q
Ch. 43 - Prob. 7QCh. 43 - Prob. 8QCh. 43 - Prob. 9QCh. 43 - Prob. 10QCh. 43 - Prob. 11QCh. 43 - Prob. 12QCh. 43 - Prob. 13QCh. 43 - Prob. 14QCh. 43 - Prob. 15QCh. 43 - Prob. 16QCh. 43 - Prob. 17QCh. 43 - Prob. 18QCh. 43 - Prob. 19QCh. 43 - Prob. 20QCh. 43 - Prob. 1PCh. 43 - Prob. 2PCh. 43 - Prob. 3PCh. 43 - Prob. 4PCh. 43 - Prob. 5PCh. 43 - Prob. 6PCh. 43 - Prob. 7PCh. 43 - Prob. 8PCh. 43 - Prob. 9PCh. 43 - Prob. 10PCh. 43 - Prob. 11PCh. 43 - Prob. 12PCh. 43 - Prob. 13PCh. 43 - Prob. 14PCh. 43 - Prob. 15PCh. 43 - Prob. 16PCh. 43 - Prob. 17PCh. 43 - Prob. 18PCh. 43 - Prob. 19PCh. 43 - Prob. 20PCh. 43 - Prob. 21PCh. 43 - Prob. 22PCh. 43 - Prob. 23PCh. 43 - Prob. 24PCh. 43 - Prob. 25PCh. 43 - Prob. 26PCh. 43 - Prob. 27PCh. 43 - Prob. 28PCh. 43 - Prob. 29PCh. 43 - Prob. 30PCh. 43 - Prob. 31PCh. 43 - Prob. 32PCh. 43 - Prob. 33PCh. 43 - Prob. 34PCh. 43 - Prob. 35PCh. 43 - Prob. 36PCh. 43 - Prob. 37PCh. 43 - Prob. 38PCh. 43 - Prob. 39PCh. 43 - Prob. 40PCh. 43 - Prob. 41PCh. 43 - Prob. 42PCh. 43 - Prob. 43PCh. 43 - Prob. 44PCh. 43 - Prob. 45PCh. 43 - Prob. 46GPCh. 43 - Prob. 47GPCh. 43 - Prob. 48GPCh. 43 - Prob. 49GPCh. 43 - Prob. 50GPCh. 43 - Prob. 51GPCh. 43 - Prob. 52GPCh. 43 - Prob. 53GPCh. 43 - Prob. 54GPCh. 43 - Prob. 55GPCh. 43 - Prob. 56GPCh. 43 - Prob. 57GPCh. 43 - Prob. 58GPCh. 43 - Prob. 59GPCh. 43 - Prob. 60GPCh. 43 - Prob. 61GPCh. 43 - Prob. 62GPCh. 43 - Prob. 63GPCh. 43 - Prob. 64GPCh. 43 - What fraction of the speed of light c is the speed...Ch. 43 - Prob. 66GPCh. 43 - Prob. 67GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the approximate uncertainty in the mass of a muon, as determined from its decay lifetime?arrow_forward2) (a) In a Compton scattering experiment, where light of frequency 5.7 x 10" Hz, scatters off a proton of mass 1.67 x 10kg, find the frequency of the photons that are scattered at an angle of 55°. (b) If a photon of wavenumber 1.1 x 10 m', materializes in to an electron-positron pair, what will be the kinetic energy of the positron?arrow_forward(II) The quantity h/mc which has the dimensions of length,is called the Compton wavelength. Determine the Comptonwavelength for (a) an electron, (b) a proton. (c) Showthat if a photon has wavelength equal to the Comptonwavelength of a particle, the photon’s energy is equal to therest energy of the particle mc2arrow_forward
- i need the answer quicklyarrow_forward(ii) Consider the two-level system with E1 = -13.6 eV and E2 = -3.4 eV. Assume A21 x 6 x 108 s-1. N1 and N2 are the populations of level E1 and E2, respectively and A21 is the Einstein coefficient of spontaneous emission. %3D (a) What is the frequency of light emitted due to transitions from E2 and E1? (b) What is the population ratio N2/N1 at T = 300 K?arrow_forward(c) A proton confined in a one dimensional box emits a 2.0 MeV gamma-ray photon in a quantum jump from n = 2 to n = 1. What is the length of the box? The mass of a proton is 1.67 x 1027 kg.arrow_forward
- (i) Normalize the wavefunction mwx² 2ħ 01(x) = exp (- where w is the angular frequency, ħ is the reduced Planck constant, m is the mass of a particle and x its position.arrow_forward(I) A proton is traveling with a speed of (8.660 ± 0.012) × 10° m/s. With what maximum precision can its position be ascertained? [Hint: Ap = m Av.]arrow_forward(I) A high-frequency photon is scattered off of an electronand experiences a change of wavelength of 1. x 10 -4nmAt what angle must a detector be placed to detect the scatteredphoton (relative to the direction of the incoming photon)?arrow_forward
- Q#1 (a)(i)A thermal neutron has a speed v at temperature T= 300 K and kinetic energy m-: 3 KT Calculate its deBroglie wavelength. State whether a beam of these neutrons could be diffracted by a crystal, and why? (ii) Explain in detail two Heisenberg uncertainty principles. Apply Uncertainty principle to estimate the kinetic energy (in MeV) of a nucleon bound within a nucleus of radius 10 15 m. (b) A metal surface is illuminated by 8.5 x 10'* Hz light emits electrons whose maximum energy is 1.97 eV. The same surface is illuminated by 12 x 104H2 light emits electrons whose maximum energy is 0.53 eV. Find the Planck's constant and work function of the surface. idth nf one dimensional hox in which a proton has an energy of 400,000 eV in its first excitedarrow_forwardI) What is the frequency of radiation required to supply 1.0 x 102 J of energy from 8.5 x 1027 photons? II) Determine the wavelength of a neutron traveling at 1.00 x 10 m/s (Massneutron = 1.675 x 10 24 g)arrow_forwardI need the answer as soon as possiblearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning