Physics for Scientists and Engineers with Modern Physics, Technology Update
Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 42, Problem 6P

(a)

To determine

Show that an electron in a classical hydrogen atom spirals into the nucleus at a rate of drdt=e412π2ε02me2c3(1r2).

(a)

Expert Solution
Check Mark

Answer to Problem 6P

An electron in a classical hydrogen atom spirals into the nucleus at a rate of drdt=e412π2ε02me2c3(1r2).

Explanation of Solution

The uniform circular motion of the electron as a particle about the proton in the hydrogen atom experiences a force which can be expressed as,

    F=kee2r2                                                                                                                  (I)

Here, ke is the Coulomb constant, e is the charge of electron, r radius of the orbit.

The force can be expressed in terms of Newton’s second law,

    F=ma                                                                                                                   (II)

Here, m is the mass of the particle, a is the acceleration.

Use equation (I) in equation (II) and solve for a.

    a=kee2mer2                                                                                                               (III)

Write the expression for the centripetal acceleration.

    a=v2r                                                                                                        (IV)

Here, v is the speed.

Use equation (II) in equation (IV),

    v2r=Fme                                                                                                             (V)

The value of the ke is 14πε0, and use equation (I) in equation (V).

    mev2=e24πε0r                                                                                             (VI)

Write the expression for the total energy,

    E=K+U                                                                                                 (VII)

Here, E is the total energy, K is the kinetic energy, U is the potential energy.

Write the expression for the kinetic energy.

    K=mev22                                                                                                  (VIII)

Write the expression for the potential energy.

    U=e24πε0r                                                                                                     (IX)

Use equation (VIII) and (IX) in equation (VII),

    E=mev22e24πε0r                                                                                          (X)

Use equation (VI) in equation (X),

    E=e28πε0r                                                                                               (XI)

The given expression connecting Eand a with dEdt is given by,

    dEdt=16πε0e2a2c3                                                                                           (XII)

Use equation (XI) and equation (III) in equation (XII),

    e28πε0r2drdt=e26πε0c3(e24πε0r2me)2drdt=e412π2ε02me2c3(1r2)                                                                (XIII)

Conclusion:

Therefore, from equation (XIII) it is shown that an electron in a classical hydrogen atom spirals into the nucleus at a rate as drdt=e412π2ε02me2c3(1r2).

(b)

To determine

The time interval over which the electron reaches r=0 starting from r0=2.00×1010m.

(b)

Expert Solution
Check Mark

Answer to Problem 6P

The time interval over which the electron reaches r=0 starting from r0=2.00×1010m is 0.846ns_.

Explanation of Solution

Write the expression for the time interval in terms of dt.

    T=0Tdt                                                                                                              (XIV)

Solve equation (XIII) for dt and Use in equation (XIV) and on integrating,

    T=02.00×1010m12π2ε02r2me2c3e4dr=12π2ε02me2c3e4r33|02.00×1010m                                                                         (XV)

Conclusion:

Substitute 8.85×1012C for ε0 , 9.11×1031kg for me, 3.00×108m/s for c and 1.60×1019C for e in equation (XV) to find T.

    T=12π2(8.85×1012C)(9.11×1031kg)(3.00×108m/s)3(1.60×1019C)(2.00×1010m)33=8.46×1010s×1ns1×109s=0.846ns

Therefore, the time interval over which the electron reaches r=0 starting from r0=2.00×1010m is 0.846ns_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
At point A, 3.20 m from a small source of sound that is emitting uniformly in all directions, the intensity level is 58.0 dB. What is the intensity of the sound at A? How far from the source must you go so that the intensity is one-fourth of what it was at A? How far must you go so that the sound level is one-fourth of what it was at A?
Make a plot of the acceleration of a ball that is thrown upward at 20 m/s subject to gravitation alone (no drag). Assume upward is the +y direction (and downward negative y).
Lab Assignment #3 Vectors 2. Determine the magnitude and sense of the forces in cables A and B. 30° 30° 300KN 3. Determine the forces in members A and B of the following structure. 30° B 200kN Name: TA: 4. Determine the resultant of the three coplanar forces using vectors. F₁ =500N, F₂-800N, F, 900N, 0,-30°, 62-50° 30° 50° F₁ = 500N = 900N F₂ = 800N

Chapter 42 Solutions

Physics for Scientists and Engineers with Modern Physics, Technology Update

Ch. 42 - Prob. 6OQCh. 42 - Prob. 7OQCh. 42 - Prob. 8OQCh. 42 - Prob. 9OQCh. 42 - Prob. 10OQCh. 42 - Prob. 11OQCh. 42 - Prob. 12OQCh. 42 - Prob. 13OQCh. 42 - Prob. 14OQCh. 42 - Prob. 15OQCh. 42 - Prob. 1CQCh. 42 - Prob. 2CQCh. 42 - Prob. 3CQCh. 42 - Prob. 4CQCh. 42 - Prob. 5CQCh. 42 - Prob. 6CQCh. 42 - Prob. 7CQCh. 42 - Prob. 8CQCh. 42 - Prob. 9CQCh. 42 - Prob. 10CQCh. 42 - Prob. 11CQCh. 42 - Prob. 12CQCh. 42 - Prob. 1PCh. 42 - Prob. 2PCh. 42 - Prob. 3PCh. 42 - Prob. 4PCh. 42 - Prob. 5PCh. 42 - Prob. 6PCh. 42 - Prob. 7PCh. 42 - Prob. 8PCh. 42 - Prob. 9PCh. 42 - Prob. 10PCh. 42 - Prob. 11PCh. 42 - Prob. 12PCh. 42 - Prob. 13PCh. 42 - Prob. 14PCh. 42 - Prob. 15PCh. 42 - Prob. 16PCh. 42 - Prob. 17PCh. 42 - Prob. 18PCh. 42 - Prob. 19PCh. 42 - Prob. 20PCh. 42 - Prob. 21PCh. 42 - Prob. 23PCh. 42 - Prob. 24PCh. 42 - Prob. 25PCh. 42 - Prob. 26PCh. 42 - Prob. 27PCh. 42 - Prob. 28PCh. 42 - Prob. 29PCh. 42 - Prob. 30PCh. 42 - Prob. 31PCh. 42 - Prob. 32PCh. 42 - Prob. 33PCh. 42 - Prob. 34PCh. 42 - Prob. 35PCh. 42 - Prob. 36PCh. 42 - Prob. 37PCh. 42 - Prob. 38PCh. 42 - Prob. 39PCh. 42 - Prob. 40PCh. 42 - Prob. 41PCh. 42 - Prob. 43PCh. 42 - Prob. 44PCh. 42 - Prob. 45PCh. 42 - Prob. 46PCh. 42 - Prob. 47PCh. 42 - Prob. 48PCh. 42 - Prob. 49PCh. 42 - Prob. 50PCh. 42 - Prob. 51PCh. 42 - Prob. 52PCh. 42 - Prob. 53PCh. 42 - Prob. 54PCh. 42 - Prob. 55PCh. 42 - Prob. 56PCh. 42 - Prob. 57PCh. 42 - Prob. 58PCh. 42 - Prob. 59PCh. 42 - Prob. 60PCh. 42 - Prob. 61PCh. 42 - Prob. 62PCh. 42 - Prob. 63PCh. 42 - Prob. 64PCh. 42 - Prob. 65APCh. 42 - Prob. 66APCh. 42 - Prob. 67APCh. 42 - Prob. 68APCh. 42 - Prob. 69APCh. 42 - Prob. 70APCh. 42 - Prob. 71APCh. 42 - Prob. 72APCh. 42 - Prob. 73APCh. 42 - Prob. 74APCh. 42 - Prob. 75APCh. 42 - Prob. 76APCh. 42 - Prob. 77APCh. 42 - Prob. 78APCh. 42 - Prob. 79APCh. 42 - Prob. 80APCh. 42 - Prob. 81APCh. 42 - Prob. 82APCh. 42 - Prob. 83APCh. 42 - Prob. 84APCh. 42 - Prob. 85APCh. 42 - Prob. 86APCh. 42 - Prob. 87APCh. 42 - Prob. 88APCh. 42 - Prob. 89CPCh. 42 - Prob. 90CPCh. 42 - Prob. 91CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Inquiry into Physics
Physics
ISBN:9781337515863
Author:Ostdiek
Publisher:Cengage
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning