Physics for Scientists and Engineers with Modern Physics, Technology Update
Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 42, Problem 18P

(a)

To determine

The radius of the orbit.

(a)

Expert Solution
Check Mark

Answer to Problem 18P

The radius of the orbit is 0.212nm_.

Explanation of Solution

Write the expression for the radius of any orbit in the hydrogen atom.

    rn=n2a0                                                                                                                  (I)

Here, rn is the radius of the nth orbit in the hydrogen atom, n is the order, a0 is the Bohr radius.

Conclusion:

Substitute 2 for n, 0.0529nm for a0 in equation (I) to find rn.

    rn=(22)(0.0529nm)=0.212nm

Therefore, the radius of the orbit is 0.212nm_.

(b)

To determine

The linear momentum of the electron.

(b)

Expert Solution
Check Mark

Answer to Problem 18P

The linear momentum of the electron is 9.97×1025kgm/s_.

Explanation of Solution

The condition for the quantization of angular momentum says that for an circular orbit,

    mvr=n                                                                                                   (II)

Here, m is the mass of the electron, v is the velocity of the particle, r is the radius of the orbit, is equal to 12π times the Planck’s constant.

Write the expression for the linear momentum of the electron.

    p=mv                                                                                                     (III)

Here, p is the linear momentum, m is the mass of the electron, v is the velocity of the electron.

Use equation (II) in equation (III), to find p.

    mv=nr=nh2πr                                                                                                          (IV)

Conclusion:

Substitute 2 for n , 6.626×1034Js for h, 0.212nm for r in equation (IV) to find p.

    p=2(6.626×1034Js)2π(0.212nm×1m109nm)=9.97×1025kgm/s

Therefore, the linear momentum of the electron is 9.97×1025kgm/s_.

(c)

To determine

The angular momentum of the electron.

(c)

Expert Solution
Check Mark

Answer to Problem 18P

The angular momentum of the electron is 2.11×1034kgm2/s_

Explanation of Solution

Write the expression for the angular momentum of the electron.

    L=mvr                                                                                                                  (V)

Conclusion:

Substitute 9.97×1025kgm/s for mv and 0.212nm for r in equation (V) to find L.

    L=(9.97×1025kgm/s)(0.212nm)=(9.97×1025kgm/s)(0.212nm×1m109nm)=2.11×1034kgm2/s

Therefore, the angular momentum of the electron is 2.11×1034kgm2/s_

(d)

To determine

The kinetic energy of the electron.

(d)

Expert Solution
Check Mark

Answer to Problem 18P

The kinetic energy of the electron is 3.40eV_.

Explanation of Solution

Write the expression for the kinetic energy of the electron.

    K=12mev2                                                                                                           (VI)

Rearrange equation (III) to find the velocity of electron.

    v=pme                                                                                                                  (VII)

Conclusion:

Substitute 9.97×1025kgm/s for p and 9.11×1031kg for me in equation (VII) to find v.

    v=9.97×1025kgm/s9.11×1031kg=1.09×106m/s

Substitute 1.09×106m/s for v and 9.11×1031kg for me in equation (VI) to find K.

  K=12(9.11×1031kg)(1.09×106m/s)2=5.45×1019J×1eV1.602×1019J=3.40eV

Therefore, the kinetic energy of the electron is 3.40eV_.

(e)

To determine

The potential energy of the system.

(e)

Expert Solution
Check Mark

Answer to Problem 18P

The potential energy of the system is 6.80eV_.

Explanation of Solution

Write the expression for the potential energy.

    U=ke2r                                                                                                           (VIII)

Here, U is the potential energy, k is the constant, e is the charge of electron.

Conclusion:

Substitute 8.99×109Nm2/C2 for 1.602×1019C for e and 0.212nm for r in equation (VIII) to find U.

    U=(8.99×109Nm2/C2)(1.602×1019C)20.212nm=(8.99×109Nm2/C2)(1.602×1019C)20.212nm×1m1×109nm=1.09×1018J×1eV1.6×1019J=6.80eV

Therefore, the potential energy of the electron is 6.80eV_.

(f)

To determine

The total energy of the system.

(f)

Expert Solution
Check Mark

Answer to Problem 18P

The total energy of the system is 3.40eV_.

Explanation of Solution

Write the expression for the total energy.

    E=K+U                                                                                             (IX)

Conclusion:

Substitute 3.40eV for K and 6.80eV for U in equation (IX) to find E.

    E=3.40eV+(6.80eV)=3.40eV

Therefore, the total energy of the system is 3.40eV_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1. Two pendula of slightly different length oscillate next to each other. The short one oscillates with frequency 0.52 Hz and the longer one with frequency 0.50 Hz. If they start of in phase determine their phase difference after 75 s.
A mass is connect to a vertical revolving axle by two strings of length L, each making an angle of 45 degrees with the axle, as shown. Both the axle and mass are revolving with angular velocity w, Gravity is directed downward. The tension in the upper string is T_upper and the tension in the lower string is T_lower.Draw a clear free body diagram for mass m. Please include real forces only.Find the tensions in the upper and lower strings, T_upper and T_lower
2. A stone is dropped into a pool of water causing ripple to spread out. After 10 s the circumference of the ripple is 20 m. Calculate the velocity of the wave.

Chapter 42 Solutions

Physics for Scientists and Engineers with Modern Physics, Technology Update

Ch. 42 - Prob. 6OQCh. 42 - Prob. 7OQCh. 42 - Prob. 8OQCh. 42 - Prob. 9OQCh. 42 - Prob. 10OQCh. 42 - Prob. 11OQCh. 42 - Prob. 12OQCh. 42 - Prob. 13OQCh. 42 - Prob. 14OQCh. 42 - Prob. 15OQCh. 42 - Prob. 1CQCh. 42 - Prob. 2CQCh. 42 - Prob. 3CQCh. 42 - Prob. 4CQCh. 42 - Prob. 5CQCh. 42 - Prob. 6CQCh. 42 - Prob. 7CQCh. 42 - Prob. 8CQCh. 42 - Prob. 9CQCh. 42 - Prob. 10CQCh. 42 - Prob. 11CQCh. 42 - Prob. 12CQCh. 42 - Prob. 1PCh. 42 - Prob. 2PCh. 42 - Prob. 3PCh. 42 - Prob. 4PCh. 42 - Prob. 5PCh. 42 - Prob. 6PCh. 42 - Prob. 7PCh. 42 - Prob. 8PCh. 42 - Prob. 9PCh. 42 - Prob. 10PCh. 42 - Prob. 11PCh. 42 - Prob. 12PCh. 42 - Prob. 13PCh. 42 - Prob. 14PCh. 42 - Prob. 15PCh. 42 - Prob. 16PCh. 42 - Prob. 17PCh. 42 - Prob. 18PCh. 42 - Prob. 19PCh. 42 - Prob. 20PCh. 42 - Prob. 21PCh. 42 - Prob. 23PCh. 42 - Prob. 24PCh. 42 - Prob. 25PCh. 42 - Prob. 26PCh. 42 - Prob. 27PCh. 42 - Prob. 28PCh. 42 - Prob. 29PCh. 42 - Prob. 30PCh. 42 - Prob. 31PCh. 42 - Prob. 32PCh. 42 - Prob. 33PCh. 42 - Prob. 34PCh. 42 - Prob. 35PCh. 42 - Prob. 36PCh. 42 - Prob. 37PCh. 42 - Prob. 38PCh. 42 - Prob. 39PCh. 42 - Prob. 40PCh. 42 - Prob. 41PCh. 42 - Prob. 43PCh. 42 - Prob. 44PCh. 42 - Prob. 45PCh. 42 - Prob. 46PCh. 42 - Prob. 47PCh. 42 - Prob. 48PCh. 42 - Prob. 49PCh. 42 - Prob. 50PCh. 42 - Prob. 51PCh. 42 - Prob. 52PCh. 42 - Prob. 53PCh. 42 - Prob. 54PCh. 42 - Prob. 55PCh. 42 - Prob. 56PCh. 42 - Prob. 57PCh. 42 - Prob. 58PCh. 42 - Prob. 59PCh. 42 - Prob. 60PCh. 42 - Prob. 61PCh. 42 - Prob. 62PCh. 42 - Prob. 63PCh. 42 - Prob. 64PCh. 42 - Prob. 65APCh. 42 - Prob. 66APCh. 42 - Prob. 67APCh. 42 - Prob. 68APCh. 42 - Prob. 69APCh. 42 - Prob. 70APCh. 42 - Prob. 71APCh. 42 - Prob. 72APCh. 42 - Prob. 73APCh. 42 - Prob. 74APCh. 42 - Prob. 75APCh. 42 - Prob. 76APCh. 42 - Prob. 77APCh. 42 - Prob. 78APCh. 42 - Prob. 79APCh. 42 - Prob. 80APCh. 42 - Prob. 81APCh. 42 - Prob. 82APCh. 42 - Prob. 83APCh. 42 - Prob. 84APCh. 42 - Prob. 85APCh. 42 - Prob. 86APCh. 42 - Prob. 87APCh. 42 - Prob. 88APCh. 42 - Prob. 89CPCh. 42 - Prob. 90CPCh. 42 - Prob. 91CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY