The function that models the temperature T ( t ) (in °F ) of the water t hours after the water heater is shut off originally 122 °F . The water heater is shut off and the water cools to the temperature of the surrounding air, which is 60 °F . The water cools slowly because of the insulation inside the heater, and the value of k is measured as 0.00351.
The function that models the temperature T ( t ) (in °F ) of the water t hours after the water heater is shut off originally 122 °F . The water heater is shut off and the water cools to the temperature of the surrounding air, which is 60 °F . The water cools slowly because of the insulation inside the heater, and the value of k is measured as 0.00351.
Solution Summary: The author explains Newton's law of cooling, which states that the temperature of a warm object decreases exponentially with time.
The function that models the temperature T(t)(in °F) of the water t hours after the water heater is shut off originally 122°F. The water heater is shut off and the water cools to the temperature of the surrounding air, which is 60°F. The water cools slowly because of the insulation inside the heater, and the value of k is measured as 0.00351.
(b)
To determine
To calculate: The temperature of the water 12 hours after the water heater is shut off originally 122°F rounded to the nearest degree. The water heater is shut off and the water cools to the temperature of the surrounding air, which is 60°F. The water cools slowly because of the insulation inside the heater, and the value of k is measured as 0.00351.
(c)
To determine
The water still be warm enough for a shower 24 hours waited by Dominic. Initially the temperature of water is 122°F. The water heater is shut off and the water cools to the temperature of the surrounding air, which is 60°F. The water cools slowly because of the insulation inside the heater, and the value of k is measured as 0.00351.
1
-2
4
10
My goal is to put the matrix
5
-1
1
0 into row echelon form using Gaussian elimination.
3
-2
6
9
My next step is to manipulate this matrix using elementary row operations to get a 0 in the a21 position.
Which of the following operations would be the appropriate elementary row operation to use to get a 0 in
the a21 position?
O (1/5)*R2 --> R2
○ 2R1 + R2 --> R2
○ 5R1+ R2 --> R2
O-5R1 + R2 --> R2
The 2x2 linear system of equations -2x+4y = 8 and 4x-3y = 9 was put into the following
-2 4
8
augmented matrix:
4
-3
9
This augmented matrix is then converted to row echelon form. Which of the following matrices is the
appropriate row echelon form for the given augmented matrix?
0
Option 1:
1
11
-2
Option 2:
4
-3 9
Option 3:
10
܂
-2
-4
5
25
1
-2
-4
Option 4:
0 1
5
1 -2
Option 5:
0
0
20
-4
5
○ Option 1 is the appropriate row echelon form.
○ Option 2 is the appropriate row echelon form.
○ Option 3 is the appropriate row echelon form.
○ Option 4 is the appropriate row echelon form.
○ Option 5 is the appropriate row echelon form.
Let matrix A have order (dimension) 2x4 and let matrix B have order (dimension) 4x4.
What results when you compute A+B?
The resulting matrix will have dimensions of 2x4.
○ The resulting matrix will be a single number (scalar).
The resulting matrix will have dimensions of 4x4.
A+B is undefined since matrix A and B do not have the same dimensions.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY