Introduction To Quantum Mechanics
3rd Edition
ISBN: 9781107189638
Author: Griffiths, David J., Schroeter, Darrell F.
Publisher: Cambridge University Press
expand_more
expand_more
format_list_bulleted
Question
Chapter 4.2, Problem 4.18P
(a)
To determine
The simplified expression of
(b)
To determine
The expectation value of the potential energy.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(2nx
sin
\1.50.
2nz
Consider the case of a 3-dimensional particle-in-a-box. Given: 4 =
sin(ny) sin
2.00.
What is the energy of the system?
O 6h?/8m
O 4h²/8m
O 3h2/8m
O none are correct
A particle with mass m is in a field and has the state (in spherical coordinates) :
Where N > 0 and a > 0 are fixed numbers. Determine the average kinetic energy of the particles.
A
particle
of
is
mass
moving in
V (x,y,z) =mo (5x² +2y²). Determine the energy of the anisotropic oscillator in the
m
1
a
two-dimensional potential
ground state.
3
(a) (15 – J2) ħo
(b) (\5 +V2)ħo
21
(c)
ħw
3.
(d)(5 + V2 )ho
(1)
Chapter 4 Solutions
Introduction To Quantum Mechanics
Ch. 4.1 - Prob. 4.1PCh. 4.1 - Prob. 4.3PCh. 4.1 - Prob. 4.4PCh. 4.1 - Prob. 4.5PCh. 4.1 - Prob. 4.6PCh. 4.1 - Prob. 4.7PCh. 4.1 - Prob. 4.8PCh. 4.1 - Prob. 4.9PCh. 4.1 - Prob. 4.10PCh. 4.1 - Prob. 4.11P
Ch. 4.2 - Prob. 4.12PCh. 4.2 - Prob. 4.13PCh. 4.2 - Prob. 4.14PCh. 4.2 - Prob. 4.15PCh. 4.2 - Prob. 4.16PCh. 4.2 - Prob. 4.17PCh. 4.2 - Prob. 4.18PCh. 4.2 - Prob. 4.19PCh. 4.2 - Prob. 4.20PCh. 4.3 - Prob. 4.21PCh. 4.3 - Prob. 4.22PCh. 4.3 - Prob. 4.23PCh. 4.3 - Prob. 4.24PCh. 4.3 - Prob. 4.25PCh. 4.3 - Prob. 4.26PCh. 4.3 - Prob. 4.27PCh. 4.4 - Prob. 4.28PCh. 4.4 - Prob. 4.29PCh. 4.4 - Prob. 4.30PCh. 4.4 - Prob. 4.31PCh. 4.4 - Prob. 4.32PCh. 4.4 - Prob. 4.33PCh. 4.4 - Prob. 4.34PCh. 4.4 - Prob. 4.35PCh. 4.4 - Prob. 4.36PCh. 4.4 - Prob. 4.37PCh. 4.4 - Prob. 4.38PCh. 4.4 - Prob. 4.39PCh. 4.4 - Prob. 4.40PCh. 4.4 - Prob. 4.41PCh. 4.5 - Prob. 4.42PCh. 4.5 - Prob. 4.43PCh. 4.5 - Prob. 4.44PCh. 4.5 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76P
Knowledge Booster
Similar questions
- Consider the Schrodinger equation for a one-dimensional linear harmonic oscillator: -(hbar2/2m) * d2ψ/dx2 + (kx2/2)*ψ(x) = Eψ(x) Substitute the wavefunction ψ(x) = e-(x^2)/(ξ^2) and find ξ and E required to satisfy the Schrodinger equation. [Hint: First calculate the second derivative of ψ(x), then substitute ψ(x) and ψ′′(x). After this substitution, there will be an overall factor of e-(x^2)/(ξ^2) on both sides of the equation which canbe an canceled out. Then, gather all terms which depend on x into one coefficient multiplying x2. This coefficient must be zero because the equation must be satisfied for any x, and equating it with zero yields the expression for ξ. Finally, the remaining x-independent part of the equation determines the eigenvalue for energy E associated with this solution.]arrow_forwardConsider a 1-dimensional quantum system of one particle Question 01: in which the particle is under a potential V(x) = mw?a?, with m being the mass of the particle and w being a parameter (you may take it as angular fre- quency) with inverse dimension of time. The particle may be found in the region -0 < x < o. Varify that the lowest two states of the system are mutually orthonormal.arrow_forwardConsider the function v(1,2) =( [1s(1) 3s(2) + 3s(1) 1s(2)] [x(1) B(2) + B(1) a(2)] Which of the following statements is incorrect concerning p(1,2) ? a. W(1,2) is normalized. Ob. The function W(1,2) is symmetric with respect to the exchange of the space and the spin coordinates of the two electrons. OC. y(1,2) is an eigenfunction of the reference (or zero-order) Hamiltonian (in which the electron-electron repulsion term is ignored) of Li with eigenvalue = -5 hartree. d. The function y(1,2) is an acceptable wave function to describe the properties of one of the excited states of Lit. Oe. The function 4(1,2) is an eigenfunction of the operator S,(1,2) = S;(1) + S,(2) with eigenvalue zero.arrow_forward
- In terms of the totally antisymmetric E-symbol (Levi-Civita tensor) with €123 = +1, the vector product can be written as (A x B) i = tijk Aj Bk, where i, j, k = 1, 2, 3 and summation over repeated indices (here j and k) is implied. i) ii) iii) iv) For general vectors A and B, using (2) prove the following relations: a) A x B=-B x A b) (A x B) A = (A x B) - B = 0. The Levi-Civita symbol is related to the Kronecker delta. Prove the following very useful formula €ijk€ilm = 8j18km - Sjm³ki. (2) Prove the formula (3) €imn€jmn = 2dij. Assuming that (3) is true (and using antisymmetry of the E-symbol), prove the relation A x (B x C) = (AC) B- (AB) Carrow_forwardCalculate the period of oscillation of Ψ(x) for a particle of mass 1.67 x 10^-27 kg in the first excited state of a box of width 1.68 x 10^-35 m. PLEASE PLEASE include a sketch of U(x) and Ψ(x)arrow_forwardis this right?arrow_forward
- 2) Consider a particle in a three-dimensional harmonic oscillator potential V (r, y, z) = 5mw²(r² + y² + z®). The stationary states of such a system are given by ntm(r, y, z) = vn(x)¢r(y)v'm(2) (where the functions on the right are the single-particle harmonic oscillator stationary states) with energies Entm = hw(n +l+m+ ). Calculate the lifetime of the state 201.arrow_forwardStarting with the equation of motion of a three-dimensional isotropic harmonic ocillator dp. = -kr, dt (i = 1,2,3), deduce the conservation equation dA = 0, dt where 1 P.P, +kr,r,. 2m (Note that we will use the notations r,, r2, r, and a, y, z interchangeably, and similarly for the components of p.)arrow_forwardpost |Consider a system which is in the state, Y(0,4) =Y,"(0,ø)+ J¿r,"(0,ø)+Y'(0,$), where Y," (0,4) are the spherical harmonics. If Î, is measured what possible values can be obtained? (a) –ħ,0,ħ (b) +ħ‚2ħ,-ħ (c) +ħ,3ħ,-ħ (d) +ħ,-ħ (е) 3h, 2harrow_forward
- Use the method of separation of variables to construct the energy eigenfunctions for the particle trapped in a 2D box. In other words, solve the equation: −ℏ22m(∂2Φn(x,y)∂x2+∂2Φn(x,y)∂y2)=EnΦn(x,y),−ℏ22m(∂2Φn(x,y)∂x2+∂2Φn(x,y)∂y2)=EnΦn(x,y), such that the solution is zero at the boundaries of a box of 'width' LxLx and 'height' LyLy. You will see that the 'allowed' energies EnEn are quantized just like the case of the 1D box. It is most convenient to to place the box in the first quadrant with one vertex at the origin.arrow_forwardProblem 1: (a) A non-relativistic, free particle of mass m is bouncing back and forth between two perfectly reflecting walls separated by a distance L. Imagine that the two oppositely directed matter waves associated with this particle interfere to create a standing wave with a node at each of the walls. Find the kinetic energies of the ground state (first harmonic, n = 1) and first excited state (second harmonic, n = 2). Find the formula for the kinetic energy of the n-th harmonic. (b) If an electron and a proton have the same non-relativistic kinetic energy, which particle has the larger de Broglie wavelength? (c) Find the de Broglie wavelength of an electron that is accelerated from rest through a small potential difference V. (d) If a free electron has a de Broglie wavelength equal to the diameter of Bohr's model of the hydrogen atom (twice the Bohr radius), how does its kinetic energy compare to the ground-state energy of an electron bound to a Bohr model hydrogen atom?arrow_forwardQuestion 2: The Rigid Rotor Consider two particles of mass m attached to the ends of a massless rigid rod with length a. The system is free to rotate in 3 dimensions about the center, but the center point is held fixed. (a) Show that the allowed energies for this rigid rotor are: n?n(n+1) En = where n = 0, 1, 2... та? (b) What are the normalized eigenfunctions for this system? (c) A nitrogen molecule (N2) can be described as a rigid rotor. If the distance between N atoms is 1.1 Å, then what wavelength of photon must be absorbed to produce a transition from the n = 1 to n = 4 state?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning