Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 42, Problem 15P
(a)
To determine
The
(b)
To determine
The corresponding quantum number when the Moon’s angular momentum is described by Bohr’s assumption.
(c)
To determine
The fraction of the Earth-Moon distance which have to be increased to raise the quantum number by 1.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Calculate the angular momentum of the Moon due to its orbital motion about Earth. In your calculation use 3.84 x 108 m as the average Earth–Moon distance and 2.36 x 106 s as the period of the Moon in its orbit. (b) If the angular momentum of the Moon obeys Bohr’s quantization rule (L = n h), determine the value of the quantum number n. (c) By what fraction would the Earth–Moon radius have to be increased to increase the quantum number by 1?
A) By what factor is the uncertainty of the electron's position(1.36×10-4 m) larger than the diameter of the hydrogen atom?(Assume the diameter of the hydrogen atom is 1.00×10-8 cm.)
B) Use the Heisenberg uncertainty principle to calculate Δx for a ball (mass = 122 g, diameter = 8.50 cm) with Δv = 0.425 m/s.
C) The uncertainty of the (above) ball's position is equal to what factor times the diameter of the ball?
(a) Calculate the angular momentum of the Moon due to its orbital motion about Earth. In your calculation use 3.84 × 108 m as the average Earth−Moon distance and 2.36 × 106 s as the period of the Moon in its orbit. (b) If the angular momentum of the Moon obeys Bohr’s quantization rule (L=nh), ), determine the value of the quantum number n. (c) By what fraction would the Earth−Moon radius have to be increased to increase the quantum number by 1?
Chapter 42 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 42.3 - Prob. 42.1QQCh. 42.3 - Prob. 42.2QQCh. 42.4 - Prob. 42.3QQCh. 42.4 - Prob. 42.4QQCh. 42.8 - Prob. 42.5QQCh. 42 - Prob. 1OQCh. 42 - Prob. 2OQCh. 42 - Prob. 3OQCh. 42 - Prob. 4OQCh. 42 - Prob. 5OQ
Ch. 42 - Prob. 6OQCh. 42 - Prob. 7OQCh. 42 - Prob. 8OQCh. 42 - Prob. 9OQCh. 42 - Prob. 10OQCh. 42 - Prob. 11OQCh. 42 - Prob. 12OQCh. 42 - Prob. 13OQCh. 42 - Prob. 14OQCh. 42 - Prob. 15OQCh. 42 - Prob. 1CQCh. 42 - Prob. 2CQCh. 42 - Prob. 3CQCh. 42 - Prob. 4CQCh. 42 - Prob. 5CQCh. 42 - Prob. 6CQCh. 42 - Prob. 7CQCh. 42 - Prob. 8CQCh. 42 - Prob. 9CQCh. 42 - Prob. 10CQCh. 42 - Prob. 11CQCh. 42 - Prob. 12CQCh. 42 - Prob. 1PCh. 42 - Prob. 2PCh. 42 - Prob. 3PCh. 42 - Prob. 4PCh. 42 - Prob. 5PCh. 42 - Prob. 6PCh. 42 - Prob. 7PCh. 42 - Prob. 8PCh. 42 - Prob. 9PCh. 42 - Prob. 10PCh. 42 - Prob. 11PCh. 42 - Prob. 12PCh. 42 - Prob. 13PCh. 42 - Prob. 14PCh. 42 - Prob. 15PCh. 42 - Prob. 16PCh. 42 - Prob. 17PCh. 42 - Prob. 18PCh. 42 - Prob. 19PCh. 42 - Prob. 20PCh. 42 - Prob. 21PCh. 42 - Prob. 23PCh. 42 - Prob. 24PCh. 42 - Prob. 25PCh. 42 - Prob. 26PCh. 42 - Prob. 27PCh. 42 - Prob. 28PCh. 42 - Prob. 29PCh. 42 - Prob. 30PCh. 42 - Prob. 31PCh. 42 - Prob. 32PCh. 42 - Prob. 33PCh. 42 - Prob. 34PCh. 42 - Prob. 35PCh. 42 - Prob. 36PCh. 42 - Prob. 37PCh. 42 - Prob. 38PCh. 42 - Prob. 39PCh. 42 - Prob. 40PCh. 42 - Prob. 41PCh. 42 - Prob. 43PCh. 42 - Prob. 44PCh. 42 - Prob. 45PCh. 42 - Prob. 46PCh. 42 - Prob. 47PCh. 42 - Prob. 48PCh. 42 - Prob. 49PCh. 42 - Prob. 50PCh. 42 - Prob. 51PCh. 42 - Prob. 52PCh. 42 - Prob. 53PCh. 42 - Prob. 54PCh. 42 - Prob. 55PCh. 42 - Prob. 56PCh. 42 - Prob. 57PCh. 42 - Prob. 58PCh. 42 - Prob. 59PCh. 42 - Prob. 60PCh. 42 - Prob. 61PCh. 42 - Prob. 62PCh. 42 - Prob. 63PCh. 42 - Prob. 64PCh. 42 - Prob. 65APCh. 42 - Prob. 66APCh. 42 - Prob. 67APCh. 42 - Prob. 68APCh. 42 - Prob. 69APCh. 42 - Prob. 70APCh. 42 - Prob. 71APCh. 42 - Prob. 72APCh. 42 - Prob. 73APCh. 42 - Prob. 74APCh. 42 - Prob. 75APCh. 42 - Prob. 76APCh. 42 - Prob. 77APCh. 42 - Prob. 78APCh. 42 - Prob. 79APCh. 42 - Prob. 80APCh. 42 - Prob. 81APCh. 42 - Prob. 82APCh. 42 - Prob. 83APCh. 42 - Prob. 84APCh. 42 - Prob. 85APCh. 42 - Prob. 86APCh. 42 - Prob. 87APCh. 42 - Prob. 88APCh. 42 - Prob. 89CPCh. 42 - Prob. 90CPCh. 42 - Prob. 91CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An atom in an excited state of 4.7 eV emits a photon and ends up in the ground state. The lifetime of the excited state is 1.0 x 10-13 s. (a) What is the energy uncertainty of the emitted photon? (b) What is the spectral line width (in wavelength) of the photon?arrow_forwardUsing the Boh model of an electron orbiting a nucleus, the angular momentum of Earth's orbit around the Sun is 2.67 x 1040 g m2 s−1. Using the Bohr quantization condition, what is the quantum number n for Earth's orbit? If the Earth transitions from this orbit to n-1 (emitting a graviton, which is the gravitational anagloue of the photon), how much energy would be released? Find the frequency of the graviton.arrow_forwardAn atom of iron has a radius of 156. pm and the average orbital speed of the electrons in it is about ×5.7*10^7 m/s. Calculate the least possible uncertainty in a measurement of the speed of an electron in an atom of iron. Write your answer as a percentage of the average speed, and round it to 2 significant digits.arrow_forward
- In the Bohr model of the atom, we assume that nanoscale particles behave according to classical physics (This assumption is not entirely justified, but does work surprisingly well). In this model, an electron (mass m = 9.11 x 10-³1 kg) orbits a nucleus at a distance that depends on the principal quantum number of the electron (1s orbital, 2s orbital, etc) and the composition of the nucleus. If the electron orbits at a distance of 9.90 x 10-¹1 m due to a Coulomb force of 2.35 x 10-8 N, how many revolutions per second does the electron make? 2.569arrow_forward(a) Calculate the angular momentum of the Moon due to its orbital motion about Earth. In your calculation use 3.84 × 108 m as the average Earth- Moon distance and 2.36 × 106 s as the period of the Moon in its orbit. (Use 7.36 × 1022 kg for the mass of the moon.) kg. m²/s 2.889e34 (b) If the angular momentum of the moon obeys Bohr's quantization rule (L: nh) determine the value of the quantum number, n. 2.7395e68 (c) By what fraction would the Earth-Moon radius have to be increased to increase the quantum number by 1? 1.825e-69 X Your response differs from the correct answer by more than 10%. Double check your calculations.arrow_forward(a) Calculate the angular momentum of the Moon due to its orbital motion about Earth. In your calculation use 3.84 x 10⁰ m as the average Earth- Moon distance and 2.36 × 106 s as the period of the Moon in its orbit. (Use 7.36 × 1022 kg for the mass of the moon.) 2.889e34 kg. m²/s (b) If the angular momentum of the moon obeys Bohr's quantization rule (L = nħ) determine the value of the quantum number, n. 8.463e67 Your response differs from the correct answer by more than 10%. Double check your calculations. (c) By what fraction would the Earth-Moon radius have to be increased to increase the quantum number by 1? 2.3632e-6 X Your response differs from the correct answer by more than 100%.arrow_forward
- Quantum Physicsarrow_forwardWhat is the average radius of the orbit of an electron in the n=2 energy level of an oxygen atom (Z=8)? Express your answer in pico-meters.arrow_forwardA visible (violet) emission spectral line for chromium (Cr) occurs at wavelength λ = 425.435 nm. A) What is the frequency (ν) of this light?(Give correct units and answer to six significant figures.) B) What is the magnitude of the energy change associated with the emission of one mole of photons of light with this wavelength?arrow_forward
- Write an expression relating the kinetic energy KE of the electron and the potential energy PE in the Bohr model of the hydrogen atom. (a) Suppose a hydrogen atom absorbs a photon of energy E, resulting in the transfer of the electron to a higher - energy level. Express the resulting change in the potential energy of the system in terms of E. (b) What is the change in the electron’s kinetic energy during this process?arrow_forwardA beam of electrons travels at approximately 1.282×10° m/s and there is a 5.00% uncertainty in the velocity. According to the Heisenberg uncertainty principle, what would be the expected uncertainty in the position of an electron in the beam? Give your answer in units of the Bohr radius.arrow_forwardThe quantum state of an electron in an atom is described by quantum numbers n = 6, ℓ = 4, and mℓ = 1. The orbital total angular momentum of the electron is measured to be x × h/2π, where h is Planck’s constant. What is the number x(remember to use the scientific notation)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning