(a)
The moment of inertia of the hydrogen molecule about an axis through its center of mass and perpendicular to H-H bond.
(a)
Answer to Problem 13P
The moment of inertia of the hydrogen molecule about an axis through its center of mass and perpendicular to H-H bond is
Explanation of Solution
A hydrogen molecule makes a transition from ground level to
Write the formula for energy levels.
Here,
Refer equation (I) and find energy of
Here,
Refer equation (I) and find energy of
Here,
Refer equation (I) and find energy of
Here,
Write the formula for the energy difference between
Here,
Write the formula for the energy difference between
Here,
Subtract equation (III) from (II).
Re-write the above equation.
Re-write the above equation to obtain
Conclusion:
Substitute
The moment of inertia of the hydrogen molecule about an axis through its center of mass and perpendicular to H-H bond is
(b)
The vibrational frequency of the hydrogen molecule.
(b)
Answer to Problem 13P
The vibrational frequency of the hydrogen molecule is
Explanation of Solution
Refer section (a) and write the formula for the energy difference between
Here,
Re-write the above equation to get an expression for
Write the formula for
Here,
Conclusion:
Substitute
Substitute
The vibrational frequency of the hydrogen molecule is
(c)
The equilibrium separation distance for the molecule.
(c)
Answer to Problem 13P
The equilibrium separation distance for the molecule is
Explanation of Solution
Write the formula for the moment of inertia of the molecule.
Here,
Reduced mass of hydrogen molecule is half of the mass of it.
Here,
Re-write the above equation to get an expression for
Conclusion:
Substitute
The equilibrium separation distance for the molecule is
Want to see more full solutions like this?
Chapter 42 Solutions
Physics for Scientists and Engineers with Modern Physics
- I need correct answer not chatgptarrow_forwardWhat is the resistance (in (2) of a 27.5 m long piece of 17 gauge copper wire having a 1.150 mm diameter? 0.445 ΧΩarrow_forwardFind the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring). d. Ag dFe = 2.47 ×arrow_forward
- Find the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring). d Ag = 2.51 dFe ×arrow_forwardShow that the units 1 v2/Q = 1 W, as implied by the equation P = V²/R. Starting with the equation P = V²/R, we can get an expression for a watt in terms of voltage and resistance. The units for voltage, V, are equivalent to [? v2 v2 A, are equivalent to J/C ✓ X . Therefore, 1 = 1 = 1 A V1 J/s Ω V-A X = 1 W. . The units for resistance, Q, are equivalent to ? The units for current,arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning