Explanation of Solution
Using preemptive goal
Consider the case of building recreational facilities at Gotham city. Goal course, Swimming pool, Gymnasiums and Tennis Courts are the recreational facilities under consideration. The facilities can be built at any of the 6 locations.
Lets,
Since, Golf course can only be built at site 1 or 6, so
Since each facility can be built at only one site, add the following constraints.
The land available at site 2,3,4,5 is 70,80,95, and 120 respectively. Land required, building annual maintenance cost is tabulated below,
Site | Construction cost | Maintenance cost | Land required |
Golf | 340 | 80 | Not relevant |
Swimming | 300 | 36 | 29 |
Gymnasium | 840 | 50 | 38 |
Tennis curt | 85 | 17 | 45 |
Site | 1 | 2 | 3 | 4 | 5 | 6 |
Golf | 31 | NA | NA | NA | NA | 27 |
Swimming | NA | 25 | 21 | 32 | 32 | NA |
Gymnasium | NA | 37 | 29 | 28 | 38 | NA |
Tennis court | NA | 20 | 23 | 22 | 20 | NA |
a.
Priority set are given below,
Priority 1: Limit land use at each site to the land available. Thus the following constraints are added.
Priority 2: Construction costs should not exceed $1.2 million. Thus the following constraints are added.
Priority 3: User days should exceed 200,000. Thus the following constraints are added.
Priority 4: Annual maintenance cost should not exceed $200,000. Thus the following constraints are added.
From the above equations it is found that these set of constraints there is no feasible region. That is all constraints cannot be met. So assign a cost value incurred if any of the priorities or goal is not met.
So, introduce the following deviational variables.
Therefore, the constraints become,
Now, the goal is to minimize the deviation from each goal. Hence if the left side of constraint was less than right hand side than
Hence the minimization equation is,
Minimize,
For each Priority assign a value of

Trending nowThis is a popular solution!

Chapter 4 Solutions
Student Suite Cd-rom For Winston's Operations Research: Applications And Algorithms
- 1 typedef struct node* { 2 struct node* next; 3 char* key; 4 char* val; 5} node_t; 6 7 char* find_node (node_t* node, char* key_to_find) { while(strcmp (node->key, key_to_find ) != 0 ) { node = node->next; 8 9 10 } 11 return node->val; 12 }arrow_forwardMatch each of the assembler routines on the left with the equivalent C function on the right. Write the name of the label (e.g., foo) to the right of the corresponding function. Note: shrq is the logical right shift instruction, and sarq is the arithmetic right shift instruction. foo1: leaq 0(,%rdi, 8), %rax long choice1 (long x) { ret return x - 8 >8; foo3: } movq sarq %rdi, %rax $8, %rax long choice4 (long x) ret { return x*256; } foo4: long choice5 (long x) leaq -8 (%rdi), %rax { ret return x-8; } long choice6 (long x) foo5: { leaq -8 (%rdi), %rax return x+8; shrq $63, %rax } retarrow_forwardGiven the variables and code in the text below, identify where in memory they will live once the code is compiled. 1 char big_array [1L<<24]; /* 16 MB */ 2 GB * :/ 2 char huge_array [1L<<31]; /* 3 4 int global = 0; 5 6 int useless () { return 0; } 7 8 int main() 9 { 10 void *p1, p2, *p3, *p4; int local = 0; malloc (1L << 28); /* 256 MB *, 11 12 p1 13 p2 = malloc (1L << 8); /* 256 B * 14 p3 15 p4 = malloc (1L << 32); malloc (1L << 8); /* 4 GB * */ /* 256 B */ 16 } Note: *pN is the thing at which pN points. 1. big_array 2. huge_array 3. global 4. useless 5. void* p1 6. *p1 7. void* p2 8. *p2 9. void* p3 10. *p3 11. void* p4 12. *p4arrow_forward
- The next problem concerns the following C code: /copy input string x to buf */ void foo (char *x) { char buf [8]; strcpy((char *) buf, x); } void callfoo() { } foo("ZYXWVUTSRQPONMLKJIHGFEDCBA"); Here is the corresponding machine code on a Linux/x86 machine: 0000000000400530 : 400530: 48 83 ec 18 sub $0x18,%rsp 400534: 48 89 fe mov %rdi, %rsi 400537: 48 89 e7 mov %rsp,%rdi 40053a: e8 di fe ff ff callq 400410 40053f: 48 83 c4 18 add $0x18,%rsp 400543: c3 retq 400544: 0000000000400544 : 48 83 ec 08 sub $0x8,%rsp 400548: bf 00 06 40 00 mov $0x400600,%edi 40054d: e8 de ff ff ff callq 400530 400552: 48 83 c4 08 add $0x8,%rsp 400556: c3 This problem tests your understanding of the program stack. Here are some notes to help you work the problem: ⚫ strcpy(char *dst, char *src) copies the string at address src (including the terminating '\0' character) to address dst. It does not check the size of the destination buffer. • You will need to know the hex values of the following characters:arrow_forwardConsider the following assembly code for a C for loop: movl $0, %eax jmp .L2 .L3: addq $1, %rdi addq %rsi, %rax subq $1, %rsi .L2: cmpq %rsi, %rdi jl .L3 addq ret %rdi, %rax Based on the assembly code above, fill in the blanks below in its corresponding C source code. Recall that registers %rdi and %rsi contain the first and second, respectively, argument of a function. (Note: you may only use the symbolic variables x, y, and result in your expressions below do not use register names.) long loop (long x, long y) { long result; } for ( } return result; __; y--) {arrow_forwardIn each of the following C code snippets, there are issues that can prevent the compiler from applying certain optimizations. For each snippet: Circle the line number that contains compiler optimization blocker. ⚫ Select the best modification to improve optimization. 1. Which line prevents compiler optimization? Circle one: 2 3 4 5 6 Suggested solution: ⚫ Remove printf or move it outside the loop. Remove the loop. • Replace arr[i] with a constant value. 1 int sum (int *arr, int n) { 2 int s = 0; 3 for (int i = 0; i < n; i++) { 4 5 6 } 7 8 } s = arr[i]; printf("%d\n", s); return s; 234206 2. Which line prevents compiler optimization? Circle one: 2 3 4 5 6 Suggested solution: Move or eliminate do_extra_work() if it's not necessary inside the loop. Remove the loop (but what about scaling?). ⚫ Replace arr[i] *= factor; with arr[i] = 0; (why would that help?). 1 void scale (int *arr, int n, int factor) { 5 6 } for (int i = 0; i < n; i++) { rr[i] = factor; do_extra_work ();arrow_forward
- 123456 A ROP (Return-Oriented Programming) attack can be used to execute arbitrary instructions by chaining together small pieces of code called "gadgets." Your goal is to create a stack layout for a ROP attack that calls a function located at '0x4018bd3'. Below is the assembly code for the function 'getbuf', which allocates 8 bytes of stack space for a 'char' array. This array is then passed to the 'gets' function. Additionally, you are provided with five useful gadgets and their addresses. Use these gadgets to construct the stack layout. Assembly for getbuf 1 getbuf: sub mov $8, %rsp %rsp, %rdi call gets add $8, %rsp ret #Allocate 8 bytes for buffer #Load buffer address into %rdi #Call gets with buffer #Restore the stack pointer #Return to caller Stack Layout each 8-byte (fill in section) Address Value (8 bytes) 0x7fffffffdfc0 0x7fffffffdfb8 0x7fffffffdfb0 0x7fffffffdfa8 0x7fffffffdfa0 0x7fffffffdf98 0x7fffffffdf90 0x7fffffffdf88 Gadgets Address Gadget Ox4006a7 pop %rdi; ret Ox4006a9…arrow_forwardProblem 1 [15 points] The code below is buggy. Assume the code compiles. Briefly: 1). Identify the problem with the code (e.g., can access memory out of bounds) and 2). Suggest a solution (e.g., check the length). Question 1 1 #define BLENGTH 5 2 int b[BLENGTH]; 3 void copy_from_global_int_array_b (int n, int* dest) { 4 5 } *dest = b[n]; ==arrow_forwardWhich statement regarding SGA_MAX_SIZE is true? SGA_MAX_SIZE is modifiable after an instance is started, only when Automatic Memory Management is used. SGA_MAX_SIZE is not dyamically modifiable. SGA_MAX_SIZE is ignored when MEMORY_TARGET > 0. SGA-MAX_SIZE must be specified when SGA_TARGET > 0arrow_forward
- Explian this C program #include <stdio.h> unsigned int rotateRight(unsigned int num, unsigned int bits) { unsignedint bit_count =sizeof(unsignedint) *8; bits = bits % bit_count; // Handle cases where bits >= bit_count return (num >> bits) | (num << (bit_count - bits)); } int main() { unsignedint num, bits; printf("Enter a number: "); scanf("%u", &num); printf("Enter the number of bits to shift: "); scanf("%u", &bits); printf("After rotation: %u\n", rotateRight(num, bits)); return0; }arrow_forwardExplian thiS C program #include<stdio.h> int countSetBits(int n) { int count = 0; while (n) { count += n & 1; n >>= 1; } return count;} int main() { int num; printf("Enter a number: "); scanf("%d", &num); printf("Output: %d units\n", countSetBits(num)); return 0;}arrow_forwardPlease provide the Mathematica codearrow_forward
- Operations Research : Applications and AlgorithmsComputer ScienceISBN:9780534380588Author:Wayne L. WinstonPublisher:Brooks ColeA Guide to SQLComputer ScienceISBN:9781111527273Author:Philip J. PrattPublisher:Course Technology PtrNp Ms Office 365/Excel 2016 I NtermedComputer ScienceISBN:9781337508841Author:CareyPublisher:Cengage
- C++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology Ptr


