
Electric Circuits (10th Edition)
10th Edition
ISBN: 9780133760033
Author: James W. Nilsson, Susan Riedel
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4.10, Problem 18AP
To determine
Find the voltmeter reading across the terminals A-B of the circuit.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Choose the appropriate answer
1) Maximum dimension of antenna is 0.5m and operating frequency is 9 GHz, thus the radius of
reactive near field region is
0.562m
1.265m
2.526m
3.265m
2) If distance between transmitter and receiver is 2km and the signal carrier frequency is
300kHz
Rapidly time-varying fields DC field Quasi-static field None
3) The polarization mismatch factor for horizontal polarization wave incident on +z axis is
is if the antenna polarization is circular
0.5
зав
0.707
1
4) Ez 0 and Hz #0 (HE modes): This is the case when neither E nor H field is transverse to the
direction of wave propagation. They are sometimes referred to as
TEM
hybrid modes
TM
TE
5) The normalized radiation intensity of an antenna is represented by:
U(6)=cos²(0) cos2 (30), w/s Half-power beamwidth HPBW is......
28.75
10
0
14.3
Choose the best answer of the following:
1- quasi-static electromagnetic field is the
a) low frequency b)high frequency c) time independent d) none of the above
2- Displacement current is taken to be negligible (compared to the conduction current) if
a) σ>>wε b)σ << wɛ c) σ =0 d) (a and c)
3- The transmission line act as inductor when it terminated by:
a) Open circuit load b) short circuit load c)matched load d)none of the above
4- The scattering aperture equals to the effective aperture when the antenna is:
a) Complex conjugate matching b) short circuit c) open circuit d) none of the above
5- The isotropic point source has directivity of:
a) Infinity b)1 c) 0 d)1.5
I selected a DC-DC converter capable of delivering 120 VDC from a 600 VDC input. When I reached out to the manufacturer, they asked for the total power consumption the converter would need to handle.To estimate this, I calculated the power requirements for the components that will use the 120 VDC supply: interior lighting, end lights, and buzzers. The breakdown is as follows:- Light Bulbs: 16 bulbs at 10 W each = 160 W- Buzzers: 2 buzzers at 5 W each = 10 W- End Lights: 2 lights at 15 W each = 30 W
This results in a total estimated power demand of 200 W.My concern is whether I should request a higher wattage rating for the converter to provide sufficient tolerance and ensure the system operates efficiently without risking an overload.
Note: The DC power system is designed specifically for a trolley
Chapter 4 Solutions
Electric Circuits (10th Edition)
Ch. 4.2 - a) For the circuit shown, use the node-voltage...Ch. 4.2 - Use the node-voltage method to find v in the...Ch. 4.3 - Use the node-voltage method to find the power...Ch. 4.4 - Use the node-voltage method to find vo in the...Ch. 4.4 - Use the node-voltage method to find v in the...Ch. 4.4 - Use the node-voltage method to find v1 in the...Ch. 4.5 - Use the mesh-current method to find (a) the power...Ch. 4.6 - Determine the number of mesh-current equations...Ch. 4.6 - Use the mesh-current method to find vo in the...Ch. 4.7 - Use the mesh-current method to find the power...
Ch. 4.7 - Use the mesh-current method to find the mesh...Ch. 4.7 - Use the mesh-current method to find the power...Ch. 4.8 - Find the power delivered by the 2 A current source...Ch. 4.8 - Find the power delivered by the 4 A current source...Ch. 4.9 - Use a series of source transformations to find the...Ch. 4.10 - Find the Thévenin equivalent circuit with respect...Ch. 4.10 - Prob. 17APCh. 4.10 - Prob. 18APCh. 4.11 - Find the Thévenin equivalent circuit with respect...Ch. 4.11 - Find the Thévenin equivalent circuit with respect...Ch. 4.12 - Find the value of R that enables the circuit shown...Ch. 4.12 - Assume that the circuit in Assessment Problem 4.21...Ch. 4 - For the circuit shown in Fig. P4.1, state the...Ch. 4 - If only the essential nodes and branches are...Ch. 4 - Assume the voltage vs in the circuit in Fig. P4.3...Ch. 4 - A current leaving a node is defined as...Ch. 4 - How many separate parts does the circuit in Fig....Ch. 4 - Use the node-voltage method to find vo in the...Ch. 4 - Find the power developed by the 40 mA current...Ch. 4 - A 50 Ω resistor is connected in series with the 40...Ch. 4 - Use the node-voltage method to find how much power...Ch. 4 - Use the node-voltage method to show that the...Ch. 4 - Use the node-voltage method to find the branch...Ch. 4 - Use the node-voltage method to find v1 and v2 in...Ch. 4 - Use the node-voltage method to find v1 and v2 in...Ch. 4 - Use the node-voltage method to find v1, v2, and v3...Ch. 4 - The circuit shown in Fig. P4.14 is a dc model of a...Ch. 4 - Use the node-voltage method to find the total...Ch. 4 - Use the node-voltage method to find vo in the...Ch. 4 - Use the node-voltage method to calculate the power...Ch. 4 - Use the node-voltage method to find the total...Ch. 4 - Use the node voltage method to find vo for the...Ch. 4 - Find the node voltages v1, v2, and v3 in the...Ch. 4 - Use the node-voltage method to find υ0 and the...Ch. 4 - Use the node-voltage method to find the value of...Ch. 4 - Use the node-voltage method to find io in the...Ch. 4 - Use the node-voltage method to find the power...Ch. 4 - Use the node-voltage method to find vo in the...Ch. 4 - Use the node-voltage method to find the branch...Ch. 4 - Use the node-voltage method to find the value of...Ch. 4 - Assume you are a project engineer and one of your...Ch. 4 - Use the node-voltage method to find the power...Ch. 4 - Show that when Eqs. 4.13, 4.14, and 4.16 are...Ch. 4 - Use the mesh-current method to find the branch...Ch. 4 - Solve Problem 4.11 using the mesh-current...Ch. 4 - Solve Problem 4.14 using the mesh-current...Ch. 4 - Solve Problem 4.26 using the mesh-current...Ch. 4 - Use the mesh-current method to find the total...Ch. 4 - Solve Problem 4.25 using the mesh-current...Ch. 4 - Solve Problem 4.17 using the mesh-current...Ch. 4 - Use the mesh-current method to find the power...Ch. 4 - Use the mesh-current method to find the power...Ch. 4 - Use the mesh-current method to find υ0 in the...Ch. 4 - Use mesh-current method to find the power...Ch. 4 -
Use the mesh-current method to solve for iΔ in...Ch. 4 - Solve Problem 4.10 using the mesh-current...Ch. 4 - Solve Problem 4.21 using the mesh-current...Ch. 4 - Use the mesh-current method to find the total...Ch. 4 - Use the mesh-current method to find how much power...Ch. 4 - Use the mesh-current method to determine which...Ch. 4 - Use the mesh-current method to find the total...Ch. 4 - Prob. 50PCh. 4 - Solve Problem 4.23 using the mesh-current...Ch. 4 - Use the mesh-current method to find the branch...Ch. 4 - Find the branch currents ia − ie for the circuit...Ch. 4 - Assume you have been asked to find the power...Ch. 4 - A 4 kΩ resistor is placed in parallel with the 10...Ch. 4 - Would you use the node-voltage or mesh- current...Ch. 4 - Prob. 57PCh. 4 - The variable de voltage source in the circuit in...Ch. 4 - Make a series of source transformations to find...Ch. 4 - Prob. 60PCh. 4 - Use source transformations to find the current io...Ch. 4 - Use a series of source transformations to find i0...Ch. 4 - Use source transformations to find vo in the...Ch. 4 - Prob. 64PCh. 4 - Find the Norton equivalent with respect to the...Ch. 4 - Prob. 66PCh. 4 - Find the Thévenin equivalent with respect to the...Ch. 4 - Prob. 68PCh. 4 - A Thévenin equivalent can also be determined from...Ch. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - The Wheatstone bridge in the circuit shown in Fig....Ch. 4 - Prob. 74PCh. 4 - Find the Norton equivalent with respect to the...Ch. 4 - Prob. 76PCh. 4 - Prob. 77PCh. 4 - Find the Thévenin equivalent with respect to the...Ch. 4 - Find the Thévenin equivalent with respect to the...Ch. 4 - Prob. 80PCh. 4 - Find the Norton equivalent with respect to the...Ch. 4 - The variable resistor in the circuit in Fig. P4.82...Ch. 4 - Prob. 83PCh. 4 - a) Calculate the power delivered for each value of...Ch. 4 - Find the value of the variable resistor Ro in the...Ch. 4 - A variable resistor R0 is connected across the...Ch. 4 - The variable resistor (R0) in the circuit in Fig....Ch. 4 - The variable resistor in the circuit in Fig. P4.91...Ch. 4 - The variable resistor (RL) in the circuit in Fig....Ch. 4 - The variable resistor (RO) in the circuit in Fig....Ch. 4 - In the circuit in Fig. P4.92, before the 5 mA...Ch. 4 - Use the principle of superposition to find the...Ch. 4 -
Use superposition to solve for and υ0 in the...Ch. 4 - Prob. 95PCh. 4 - Use the principle of superposition to find the...Ch. 4 - Prob. 97PCh. 4 - Use the principle of superposition to find the...Ch. 4 - Assume your supervisor has asked you to determine...Ch. 4 - Prob. 100PCh. 4 - Prob. 101PCh. 4 - Prob. 102PCh. 4 - Laboratory measurements or a dc voltage source...Ch. 4 - Prob. 104PCh. 4 - Prob. 105PCh. 4 - Repeat Problem 4.105 if Ig2 increases to 17 A and...Ch. 4 - Prob. 107PCh. 4 - Use the results given in Table 4.2 to predict the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Choose the best answer 1. The minimum value of the directivity of an antenna is.......... a) Unity b) Zero 2. Very low signal strength in antenna. a) Minor lobes b) Null c) Infinite d) None c) Antenna patterns d) Major lobes 3. the maximum directivity of an antenna that normalized far field pattern is given by? 0≤0≤ and 0 ≤≤π/2,3л/2≤ p ≤ 2π E(0, 4) = {(sin 0 ((sin cos² ) 1/2 0 is a) 7.07dB b) 7.7dB elsewhere c) 8.7dB d) 9dB 4. the depth of penetration of 1 MHz wave in sea water which has conductivity mhos/meter and permeability approximately equal to that of free space is a) 25mm b) 25cm c)25m 5. The free space media can be considered as _ a) Lossy media b) lossless media c) good conductor 6. The input impedance is equal to the load impedance when a) l = 2 b)1=22 c)=4 d) 25km d) a and c .... d) a and barrow_forwardQ.1. choose the appropriate answer 1- When neither E nor H field is transverse to the direction of wave propagation. They are sometimes referred to as ...... a) hybrid mode b) TM mode c) TME modes d) TEM mode 2- If PLF-0 dB means......... a) Power is lost 100% b) Power is lost 0% c) Power is lost 50% d) none of the above 3. The half wave dipole is widely used in more applications compared to other linear antenna lengths, that is because..... a) It has high gain b) its easy matching to coaxial 75 Ohm cable c) low loss d) it has small size 4- The mode distribution for the end view waveguide shown below is a) TM12 b) TM21 c) TE20 end view d) TE02 5. When circular right hand polarized wave incident upon a horizontally polarized wave the PLF is a) 0 b)1 c)0.5 d)0.707arrow_forwarda- Single phase transmission line as in the figure below with the radius of the conductor is 0.5 cm, find the inductance of the total system. 4m 4m ao A B ob od 3m 6marrow_forward
- Please don't use ai to answer I will report you answerarrow_forwardA 3-phase, 4-wire distributor supplies a balanced voltage of 400/230 V to a load consisting of 8 A at p.f. 0-7 lagging for R-phase, 10 A at p.f. 0-8 leading for Y phase and 12 A at unity p.f. for B phase. The resistance of each line conductor is 0.4 2. The reactance of neutral is 0.2 2. Calculate the neutral current, the supply voltage for R phase and draw the phasor diagram. The phase sequence is RYB. IN ER VR Refarrow_forwardA 3-phase, 4-wire distributor supplies a balanced voltage of 400/230 V to a load consisting of 50 A at p.f. 0-866 lagging for R-phase, 30 A at p.f. 0-866 leading for Y phase and 30 A at unity pf. for B phase. The resistance of each line conductor is 0-2 Q. The area of X-section of neutral is half of any line conductor: Calculate the supply end voltage for R phase. The phase sequence is RYB.arrow_forward
- - A 3-phase, 4-wire distributor supplies a balanced voltage of 400/230 V to a load consisting of 8 A at p.f. 0.7 lagging for R-phase, 10 A at p.f. 0-8 leading for Y phase and 12 A at unity p.f. for B phase. The resistance of each line conductor is 0.4 2. The reactance of neutral is 0.2 2. Calculate the neutral current, the supply voltage for R phase and draw the phasor diagram. The phase sequence is RYB.arrow_forwardNo AI WILL REJECTarrow_forwardhelp on this one?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
What is an electric furnace and how does it work?; Author: Fire & Ice Heating and Air Conditioning Inc;https://www.youtube.com/watch?v=wjAWecPGi0M;License: Standard Youtube License