![Connect Plus Statistics Hosted by ALEKS Access Card 52 Weeks for Elementary Statistics: A Step-By-St](https://www.bartleby.com/isbn_cover_images/9781259198946/9781259198946_largeCoverImage.gif)
Concept explainers
Odds Odds are used in gambling games to make them fair. For example, if you rolled a die and won every time you rolled a 6, then you would win on average once every 6 times. So that the game is fair, the odds of 5 to 1 are given. This means that if you bet $1 and won, you could win $5. On average, you would win $5 once in 6 rolls and lose $1 on the other 5 rolls—hence the term fair game.
In most gambling games, the odds given are not fair. For example, if the odds of winning are really 20 to 1, the house might offer 15 to 1 in order to make a profit.
Odds can be expressed as a fraction or as a ratio, such as
Odds in favor =
Odds against =
In the die example,
Odds in favor of a 6 =
Odds against a 6 =
Find the odds in favor of and against each event.
a. Rolling a die and getting a 2
b. Rolling a die and getting an even number
c. Drawing a card from a deck and getting a spade
d. Drawing a card and getting a red card
e. Drawing a card and getting a queen
f. Tossing two coins and getting two tails
g. Tossing two coins and getting exactly one tail
a.
![Check Mark](/static/check-mark.png)
To obtain: The odds in favour of and against of the event rolling a die and getting a 2.
Answer to Problem 47EC
The odds in favour of and against of the event rolling a die and getting a 2 are 1:5 and 5:1
Explanation of Solution
Given info:
A single dice is rolled.
Calculation:
On rolling a single die has 6 different outcomes. That is, the outcomes are ‘1, 2, 3, 4, 5, and 6’.
The formula to obtain odds in favour of an event rolling a die and getting a 2 is,
Here, the event E is defined as rolling a die and getting 2. Hence, the favourable outcomes for getting 2 is ‘2’. That is, there is 1 outcome for event E.
The probability of event E is,
Substitute 1 for ‘Number of favourable outcomes in E’ and 6 for ‘Total number of outcomes in the sample space’,
Substitute
Thus, the odds in favour of an event rolling a die and getting a 2 is1:5.
The formula to obtain odds against of an event rolling a die and getting a 2 is,
Here, the event E is defined as rolling a die and not getting 2. Hence, the favourable outcomes for not getting 2 is ‘1, 3, 4, 5, 6’. That is, there are 5 outcomes for event E.
The probability of event E is,
Substitute 5 for ‘Number of favourable outcomes in E’ and 6 for ‘Total number of outcomes in the sample space’,
Substitute
Thus, the odds against of an event rolling a die and getting a 2 is
b.
![Check Mark](/static/check-mark.png)
To obtain: The odds in favour of and against of the event rolling a die and getting an even number.
Answer to Problem 47EC
The odds in favour of and against of the event rolling a die and getting an even number are 1:1 and 1:1
Explanation of Solution
Calculation:
On rolling a single die has 6 different outcomes. That is, the outcomes are ‘1, 2, 3, 4, 5, and 6’.
The formula to obtain odds in favour of an event rolling a die and getting an even number is,
Here, the event E is defined as rolling a die and getting an even number. Hence, the favourable outcomes for getting even numbers are ‘0, 2, 6’. That is, there are 3 favourable outcomes for event E.
The probability of event E is,
Substitute 3 for ‘Number of favourable outcomes in E’ and 6 for ‘Total number of outcomes in the sample space’,
Substitute
Thus, the odds in favour of an event rolling a die and getting an even number is1:1.
The formula to obtain odds against of an event rolling a die and getting an even number is,
Here, the event E is defined as rolling a die and not getting an even number. Hence, the favourable outcomes for not getting an even number are ‘1, 3, 5’. That is, there are 3 outcomes for event E.
The probability of event E is,
Substitute 3 for ‘Number of favourable outcomes in E’ and 6 for ‘Total number of outcomes in the sample space’,
Substitute
Thus, the odds against of an event rolling a die and getting an even number is 1:1.
c.
![Check Mark](/static/check-mark.png)
To obtain: The odds in favour of and against of the event getting spade.
Answer to Problem 47EC
The odds in favour of and against of the event getting spade are 1:3 and 3:1
Explanation of Solution
Calculation:
In ordinary deck of cards there are 4 suits. They are hearts, clubs, diamonds and spades. In each suite there are 13 cards. In 13 cards, nine cards are numbers from 2 to 10 and remaining four cards are king, queen, ace and jack cards.
The total number of outcomes is 52.
The formula to obtain odds in favour of an event getting spade is,
Here, the event E is defined as drawing a card from a deck and getting spade. Hence, the favourable outcomes for getting spade cards is ‘13’. That is, there is 13 outcomes for event E.
The probability of event E is,
Substitute 13 for ‘Number of favourable outcomes in E’ and 52 for ‘Total number of outcomes in the sample space’,
Substitute
Thus, the odds in favour of an event getting a spade card is 1:3.
The formula to obtain odds against of an event getting spade is,
Here, the event E is defined as not getting a spade. Hence, the favourable number of outcomes for not getting a spade is ‘39’. That is, there are 39 outcomes for event E.
The probability of event E is,
Substitute 39 for ‘Number of favourable outcomes in E’ and 52 for ‘Total number of outcomes in the sample space’,
Substitute
Thus, the odds against of an event getting a spade is 1:3.
d.
![Check Mark](/static/check-mark.png)
To obtain: The odds in favour of and against of the event getting a red card.
Answer to Problem 47EC
The odds in favour of and against of the event getting red card are 1:1 and 1:1
Explanation of Solution
Calculation:
In ordinary deck of cards there are 4 suits. They are hearts, clubs, diamonds and spades. In each suite there are 13 cards. In 13 cards, nine cards are numbers from 2 to 10 and remaining four cards are king, queen, ace and jack cards.
The total number of outcomes is 52.
The formula to obtain odds in favour of an event getting a red card is,
Here, the event E is defined as drawing a card from a deck and getting a red card. Hence, the favourable outcomes for getting red cards is ‘26’. That is, there are 26 outcomes for event E.
The probability of event E is,
Substitute 26 for ‘Number of favourable outcomes in E’ and 52 for ‘Total number of outcomes in the sample space’,
Substitute
Thus, the odds in favour of an event getting a red card is 1:1.
The formula to obtain odds against of an event getting a red card is,
Here, the event E is defined as not getting a red card. Hence, the favourable number of outcomes for not getting a red card is ‘26’. That is, there are 26 outcomes for event E.
The probability of event E is,
Substitute 26 for ‘Number of favourable outcomes in E’ and 52 for ‘Total number of outcomes in the sample space’,
Substitute
Thus, the odds against of an event getting a red card is 1:1.
e.
![Check Mark](/static/check-mark.png)
To obtain: The odds in favour of and against of the event getting a queen.
Answer to Problem 47EC
The odds in favour of and against of the event getting a queen are 1:12 and 12:1
Explanation of Solution
Calculation:
In ordinary deck of cards there are 4 suits. They are hearts, clubs, diamonds and spades. In each suite there are 13 cards. In 13 cards, nine cards are numbers from 2 to 10 and remaining four cards are king, queen, ace and jack cards.
The total number of outcomes is 52.
The formula to obtain odds in favour of an event getting a queen is,
Here, the event E is defined as drawing a card from a deck and getting a queen. Hence, the favourable outcomes for getting queen cards is ‘4’. That is, there are 4 outcomes for event E.
The probability of event E is,
Substitute 4 for ‘Number of favourable outcomes in E’ and 52 for ‘Total number of outcomes in the sample space’,
Substitute
Thus, the odds in favour of an event getting a queen is 1:12.
The formula to obtain odds against of an event getting a queen is,
Here, the event E is defined as not getting a queen. Hence, the favourable number of outcomes for not getting a queen is ‘48’. That is, there are 48 outcomes for event E.
The probability of event E is,
Substitute 48 for ‘Number of favourable outcomes in E’ and 52 for ‘Total number of outcomes in the sample space’,
Substitute
Thus, the odds against of an event getting a queen is 12:1.
f.
![Check Mark](/static/check-mark.png)
To obtain: The odds in favour of and against of the event tossing two coins and getting two tails.
Answer to Problem 47EC
Then odds in favour of and against of the event tossing two coins and getting two tails are 1:3 and 3:1
Explanation of Solution
Given info:
Tossing two coins.
Calculation:
The possible outcomes for tossing two coins is,
The total number of outcomes is 4.
The formula to obtain odds in favour of an event tossing two coins and getting two tails is,
Here, the event E is defined as event tossing two coins and getting two tails. Hence, the favourable outcomes for getting two tails is ‘1’. That is, there is 1 outcomes for event E.
The probability of event E is,
Substitute 1 for ‘Number of favourable outcomes in E’ and 4 for ‘Total number of outcomes in the sample space’,
Substitute
Thus, the odds in favour of an event tossing two coins and getting two tails is 1:3.
The formula to obtain odds against of an event tossing two coins and getting two tails is,
Here, the event E is defined as event tossing two coins and not getting two tails. Hence, the favourable number of outcomes for not getting a two tails is ‘3’. That is, there are 3 outcomes for event E.
The probability of event E is,
Substitute 3 for ‘Number of favourable outcomes in E’ and 4 for ‘Total number of outcomes in the sample space’,
Substitute
Thus, the odds against of an event tossing two coins and getting two tails is 3:1.
g.
![Check Mark](/static/check-mark.png)
To obtain: The odds in favour of and against of the event tossing two coins and getting exactly one tail.
Answer to Problem 47EC
Then odds in favour of and against of the event tossing two coins and getting exactly one tail are 1:1 and 1:1
Explanation of Solution
Given info:
Tossing two coins.
Calculation:
The possible outcomes for tossing two coins is,
The total number of outcomes is 4.
The formula to obtain odds in favour of an event tossing two coins and getting two tails is,
Here, the event E is defined as event tossing two coins and getting exactly one tail. Hence, the favourable outcomes for getting exactly one tail is ‘2’. That is, there are 2 outcomes for event E.
The probability of event E is,
Substitute 2 for ‘Number of favourable outcomes in E’ and 4 for ‘Total number of outcomes in the sample space’,
Substitute
Thus, the odds in favour of an event tossing two coins and getting exactly one tail is 1:1.
The formula to obtain odds against of an event tossing two coins and getting exactly one tail is,
Here, the event E is defined as event tossing two coins and not getting exactly one tail. Hence, the favourable number of outcomes for not getting exactly one tail is ‘2’. That is, there are 2 outcomes for event E.
The probability of event E is,
Substitute 2 for ‘Number of favourable outcomes in E’ and 4 for ‘Total number of outcomes in the sample space’,
Substitute
Thus, the odds against of an event tossing two coins and getting exactly 2 tails is 1:1.
Want to see more full solutions like this?
Chapter 4 Solutions
Connect Plus Statistics Hosted by ALEKS Access Card 52 Weeks for Elementary Statistics: A Step-By-St
- Are the t-statistics here greater than 1.96? What do you conclude? colgPA= 1.39+0.412 hsGPA (.33) (0.094) Find the P valuearrow_forwardA poll before the elections showed that in a given sample 79% of people vote for candidate C. How many people should be interviewed so that the pollsters can be 99% sure that from 75% to 83% of the population will vote for candidate C? Round your answer to the whole number.arrow_forwardSuppose a random sample of 459 married couples found that 307 had two or more personality preferences in common. In another random sample of 471 married couples, it was found that only 31 had no preferences in common. Let p1 be the population proportion of all married couples who have two or more personality preferences in common. Let p2 be the population proportion of all married couples who have no personality preferences in common. Find a95% confidence interval for . Round your answer to three decimal places.arrow_forward
- A history teacher interviewed a random sample of 80 students about their preferences in learning activities outside of school and whether they are considering watching a historical movie at the cinema. 69 answered that they would like to go to the cinema. Let p represent the proportion of students who want to watch a historical movie. Determine the maximal margin of error. Use α = 0.05. Round your answer to three decimal places. arrow_forwardA random sample of medical files is used to estimate the proportion p of all people who have blood type B. If you have no preliminary estimate for p, how many medical files should you include in a random sample in order to be 99% sure that the point estimate will be within a distance of 0.07 from p? Round your answer to the next higher whole number.arrow_forwardA clinical study is designed to assess the average length of hospital stay of patients who underwent surgery. A preliminary study of a random sample of 70 surgery patients’ records showed that the standard deviation of the lengths of stay of all surgery patients is 7.5 days. How large should a sample to estimate the desired mean to within 1 day at 95% confidence? Round your answer to the whole number.arrow_forward
- A clinical study is designed to assess the average length of hospital stay of patients who underwent surgery. A preliminary study of a random sample of 70 surgery patients’ records showed that the standard deviation of the lengths of stay of all surgery patients is 7.5 days. How large should a sample to estimate the desired mean to within 1 day at 95% confidence? Round your answer to the whole number.arrow_forwardIn the experiment a sample of subjects is drawn of people who have an elbow surgery. Each of the people included in the sample was interviewed about their health status and measurements were taken before and after surgery. Are the measurements before and after the operation independent or dependent samples?arrow_forwardiid 1. The CLT provides an approximate sampling distribution for the arithmetic average Ỹ of a random sample Y₁, . . ., Yn f(y). The parameters of the approximate sampling distribution depend on the mean and variance of the underlying random variables (i.e., the population mean and variance). The approximation can be written to emphasize this, using the expec- tation and variance of one of the random variables in the sample instead of the parameters μ, 02: YNEY, · (1 (EY,, varyi n For the following population distributions f, write the approximate distribution of the sample mean. (a) Exponential with rate ẞ: f(y) = ß exp{−ßy} 1 (b) Chi-square with degrees of freedom: f(y) = ( 4 ) 2 y = exp { — ½/ } г( (c) Poisson with rate λ: P(Y = y) = exp(-\} > y! y²arrow_forward
- 2. Let Y₁,……., Y be a random sample with common mean μ and common variance σ². Use the CLT to write an expression approximating the CDF P(Ỹ ≤ x) in terms of µ, σ² and n, and the standard normal CDF Fz(·).arrow_forwardmatharrow_forwardCompute the median of the following data. 32, 41, 36, 42, 29, 30, 40, 22, 25, 37arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337282291/9781337282291_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780547587776/9780547587776_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305652231/9781305652231_smallCoverImage.gif)