(a)
Find whether the plate is completely, partially, or improperly constrained.
(a)
Answer to Problem 4.59P
The plate in figure 1 is
The plate figure 2 is
The plate figure 3 is
The plate figure 4 is
The plate figure 5 is
The plate figure 6 is
The plate figure 7 is
The plate figure 8 is
Explanation of Solution
Given information:
The size of the identical plates is
Number of plates is 8.
The mass of each plate is
Calculation:
Find the weight (W) of the plate using the relation.
Here, the acceleration due to gravity is g.
Consider the acceleration due to gravity as
Substitute 40 kg for m and
Figure 1:
Show the free-body diagram of the Figure 1.
The three reactions in the plate behave like non-concurrent and non-parallel force system.
The plate in figure 1 is
Figure 2:
Show the free-body diagram of the Figure 2.
The three reactions in the plate behave like non-concurrent and non-parallel force system.
The plate figure 2 is
Figure 3:
Show the free-body diagram of the Figure 3.
The four reactions in the plate behave like non-concurrent and non-parallel force system.
The plate figure 3 is
Figure 4:
Show the free-body diagram of the Figure 4.
The three reactions in the plate behave like concurrent force system.
The plate figure 4 is
Figure 5:
Show the free-body diagram of the Figure 5.
The two reactions in the plate behave like concurrent force system.
The plate figure 5 is
Figure 6:
Show the free-body diagram of the Figure 6.
The three reactions in the plate behave like non-concurrent and non-parallel force system.
The plate figure 6 is
Figure 7:
Show the free-body diagram of the Figure 7.
The two reactions in the plate behave like concurrent force system.
The plate figure 7 is
Figure 8:
Show the free-body diagram of the Figure 8.
The four reactions in the plate behave like non-concurrent and non-parallel force system.
The plate figure 8 is
(b)
Find whether the reactions are statically determinate or indeterminate.
(b)
Answer to Problem 4.59P
The reactions in figure 1 is
The reactions in figure 2 is
The reactions in figure 3 is
The reactions in figure 4 is
The reactions in figure 5 is
The reactions in figure 6 is
The reactions in figure 7 is
The reactions in figure 8 is
Explanation of Solution
Refer Figure 1:
The equilibrium equations are;
The equilibrium equations are enough to determine the unknown reactions.
The reactions in figure 1 is
Refer Figure 2:
The equilibrium equations are;
The equilibrium equations are enough to determine the unknown reactions.
The reactions in figure 2 is
Refer Figure 3:
The equilibrium equations are;
The equilibrium equations are not enough to determine the unknown reactions.
The reactions in figure 3 is
Refer Figure 4:
The equilibrium equations are;
The equilibrium equations are enough to determine the unknown reactions.
But the plate is improperly constrained and the plate is not in equilibrium.
The reactions in figure 4 is
Refer Figure 5:
The equilibrium equations are;
The equilibrium equations are enough to determine the unknown reactions.
The reactions in figure 5 is
Refer Figure 6:
The equilibrium equations are;
The equilibrium equations are enough to determine the unknown reactions.
The reactions in figure 6 is
Refer Figure 7:
The equilibrium equations are;
The equilibrium equations are enough to determine the unknown reactions.
But the plate is improperly constrained and the plate is not in equilibrium.
The reactions in figure 7 is
Refer Figure 8:
The equilibrium equations are;
The equilibrium equations are not enough to determine the unknown reactions.
The reactions in figure 8 is
(c)
Find whether the equilibrium of the plate is maintained.
(c)
Answer to Problem 4.59P
The reactions in the plate 1 are
The plate 1 is in
The reactions in the plate 2 are
The plate 2 is in
The reactions in the plate 3 are
The plate 3 is in
The plate 4 is in
The reactions in the plate 5 are
The plate 5 is in
The reactions in the plate 6 are
The plate 6 is in
The plate 7 is in
The reactions in the plate 8 are
The plate 8 is in
Explanation of Solution
Refer Figure 1:
The equilibrium equations are;
Take moment about point A.
Resolve the horizontal component of forces.
Resolve the vertical component of forces.
Therefore, the reactions in the plate 1 are
The plate 1 is in
Refer Figure 2:
The equilibrium equations are;
Take moment about point B.
Resolve the horizontal component of forces.
Resolve the vertical component of forces.
Therefore, the reactions in the plate 2 are
The plate 2 is in
Refer Figure 3:
The equilibrium equations are;
Take moment about point A.
Resolve the horizontal component of forces.
Resolve the vertical component of forces.
Therefore, the reactions in the plate 3 are
The plate 3 is in
Refer Figure 4:
The equilibrium equations are;
The moment about point D is not equal to zero.
The plate 4 is in
Refer Figure 5:
The equilibrium equations are;
Take moment about point A.
Resolve the vertical component of forces.
Therefore, the reactions in the plate 5 are
The plate 5 is in
Refer Figure 6:
The equilibrium equations are;
Take moment about point A.
Resolve the vertical component of forces.
Resolve the horizontal component of forces.
Find the resultant force at D;
Find the angle
Therefore, the reactions in the plate 6 are
The plate 6 is in
Refer Figure 7:
The equilibrium equations are;
The plate 7 is in
Refer Figure 8:
The equilibrium equations are;
Take moment about point D.
Resolve the vertical component of forces.
Resolve the horizontal component of forces.
Therefore, the reactions in the plate 8 are
The plate 8 is in
Want to see more full solutions like this?
Chapter 4 Solutions
VECTOR MECH. FOR EGR: STATS & DYNAM (LL
- Determine the reactions at pins A and C required for equilibrium of the frame loaded as shownarrow_forwardcalcualte the horizontal force F that should be appliedto the 100 lb weight shown so that the cable AB is inclined at an angle of 30° with the vertical.arrow_forwardThe rigid block of mass M is supported by the three symetrically placed rods. The ends of the rods where level before the block was attached. Determine the largest allowable value of M if the properties of the rods are as listed: -Draw and label the diagram correctly, No diagram in the solution will be marked wrong. -Shortcut solution will be marked wrong.- Direction of the assumption of the equilibrium equation must be shown, no direction will be marked wrong.arrow_forward
- EQULIBRIUM OF RIGID BODIES - 3D The 6-m pole ABC is acted upon by a force P as shown. The pole is held by a ball-and-socket joint at A and by two cables BD and BE. If the tension in cable BE is 251 N and if a = 3m, determine the magnitude of the reaction (N) at A along the z-axis. Round off only on the final answer expressed in 3 decimal places.arrow_forwardSolve Sample Prob. 4.5, assuming that the spring is unstretched when 0 = 90°.(Reference to Sample Problem 4.5):arrow_forwardProblem 5 FN 4.5N K 20 B. 60 7.5N A small ring Pis threaded on a fixed smooth horizontal rod AB. Three horizontal forces of magnitudes 4.5N, 7.5N and FN act on P (see diagram). () Given that these three forces are in equilibrium, find the values of F and 0. (i) It is given instead that the values of F and 0 are 9.5 and 30 respectively, and the acceleration of the ring is 1.5 ms. Find the mass of the ring.arrow_forward
- The mechanism shown consists of a crank (bar AB), a connecting rod (bar BC) and the piston C that slides on the smooth surface (without friction) The combustion of gasoline produces a force P on the piston and this is maintained in equilibrium with moment M applied at A. The length of the crank is 78 mm, of the connecting rod is 279 mm, the moment is 84 nm, and the angle theta is 0.41 radians. Determine the value of P in Newtons P B Marrow_forwardA uniform semicircular rod of weight W and radius r is attached to a pin at A and rests against a frictionless surface at B. Determine the reactions at A and B.arrow_forwardEQUILIBRIUM OF RIGID BODIES - 3D The 6-m pole ABC is acted upon by a force P as shown. The pole is held by a ball-and-socket joint at A and by two cables BD and BE. If the tension in cable BE is 232 N and if a = 3m, determine the magnitude of the reaction (N) at A along the y-axis. Round off only on the final answer expressed in 3 decimal places .arrow_forward
- F= 150 N In the structure shown, force F is applied at point A at an angle of 0 in the direction shown. Pins at G, E, D, B, and C are all frictionless and all members are weightless. For the given values of F and 0 determine: F 0 = 40 deg A G (a) The reactions at points G and E (b) The forces applied to member GDC at points C and D (c) The forces applied to member ABC at point B 70 m 50 m E D B Note: components of forces in x and y directions are enough. 15 m YA 60 m 20m ALL WORK MUST BE SHOWN (FBDS, EQUATIONS, etc.). CORRECT ANSWERS WITHOUT CLEAR EVIDENCE OF HOW THEY WERE OBTAINED WILL BE MARKED AS ZERO.arrow_forward(a) Determine the reactions at A and E if P = 710 N. The reactions are positive if to the right or up, negative if to the left or down.(b) What is the maximum value which P may have for static equilibrium? Neglect the weight of the structure compared with the applied loads.arrow_forwardEight identical 500 × 750-mm rectangular plates, each of mass m = 40 kg, are held in a vertical plane as shown. All connections consist of frictionless pins, rollers, or short links. In each case, determine whether (a) the plate is completely, partially, or improperly constrained, (b) the reactions are statically determinate or indeterminate, (c) the equilibrium of the plate is maintained in the position shown. Also, wherever possible, compute the reactions.arrow_forward
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L