PRODUCTION SCHEDULING Kane Manufacturing has a division that produces two models of hibachis, model A and model B. To produce each model A hibachi requires 3 lb of cast iron and 6 min of labor. To produce each model B hibachi requires 4 lb of cast iron and 3 min of labor. The profit for each model A hibachi is $2, and the profit for each model B hibachi is $1.50. If 1000 lb of cast iron and 20 labor-hours are available for the production of hibachis each day, how many hibachis of each model should the division produce in order to maximize Kane's profit? What is the largest profit the company can realize? Is there any raw material left over?
PRODUCTION SCHEDULING Kane Manufacturing has a division that produces two models of hibachis, model A and model B. To produce each model A hibachi requires 3 lb of cast iron and 6 min of labor. To produce each model B hibachi requires 4 lb of cast iron and 3 min of labor. The profit for each model A hibachi is $2, and the profit for each model B hibachi is $1.50. If 1000 lb of cast iron and 20 labor-hours are available for the production of hibachis each day, how many hibachis of each model should the division produce in order to maximize Kane's profit? What is the largest profit the company can realize? Is there any raw material left over?
Solution Summary: The author calculates the number of models produced to maximize the Kane's profit and the value of the largest profit.
PRODUCTION SCHEDULING Kane Manufacturing has a division that produces two models of hibachis, model A and model B. To produce each model A hibachi requires 3 lb of cast iron and 6 min of labor. To produce each model B hibachi requires 4 lb of cast iron and 3 min of labor. The profit for each model A hibachi is $2, and the profit for each model B hibachi is $1.50. If 1000 lb of cast iron and 20 labor-hours are available for the production of hibachis each day, how many hibachis of each model should the division produce in order to maximize Kane's profit? What is the largest profit the company can realize? Is there any raw material left over?
A function is defined on the interval (-π/2,π/2) by this multipart rule:
if -π/2 < x < 0
f(x) =
a
if x=0
31-tan x
+31-cot x
if 0 < x < π/2
Here, a and b are constants. Find a and b so that the function f(x) is continuous at x=0.
a=
b= 3
Use the definition of continuity and the properties of limits to show that the function is continuous at the given number a.
f(x) = (x + 4x4) 5,
a = -1
lim f(x)
X--1
=
lim
x+4x
X--1
lim
X-1
4
x+4x
5
))"
5
))
by the power law
by the sum law
lim (x) + lim
X--1
4
4x
X-1
-(0,00+(
Find f(-1).
f(-1)=243
lim (x) +
-1 +4
35
4 ([
)
lim (x4)
5
x-1
Thus, by the definition of continuity, f is continuous at a = -1.
by the multiple constant law
by the direct substitution property
Chapter 4 Solutions
Finite Mathematics for the Managerial, Life, and Social Sciences, 11th Edition
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Solve ANY Optimization Problem in 5 Steps w/ Examples. What are they and How do you solve them?; Author: Ace Tutors;https://www.youtube.com/watch?v=BfOSKc_sncg;License: Standard YouTube License, CC-BY
Types of solution in LPP|Basic|Multiple solution|Unbounded|Infeasible|GTU|Special case of LP problem; Author: Mechanical Engineering Management;https://www.youtube.com/watch?v=F-D2WICq8Sk;License: Standard YouTube License, CC-BY