EBK LINEAR ALGEBRA AND ITS APPLICATIONS
6th Edition
ISBN: 9780135851043
Author: Lay
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4.1, Problem 1PP
Show that the set H of all points in ℝ2 of the form (3s, 2 + 5s) is not a vector space, by showing that it is not closed under scalar multiplication. (Find a specific vector u in H and a scalar c such that cu is not in H.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
EBK LINEAR ALGEBRA AND ITS APPLICATIONS
Ch. 4.1 - Show that the set H of all points in 2 of the form...Ch. 4.1 - Let W = Span{v1,...,vp}, where v1,..,vp are in a...Ch. 4.1 - An n n matrix A is said to be symmetric if AT =...Ch. 4.1 - Let V be the first quadrant in the xy-plane; that...Ch. 4.1 - Let W be the union of the first and third...Ch. 4.1 - Let H be the set of points inside and on the unit...Ch. 4.1 - Construct a geometric figure that illustrates why...Ch. 4.1 - In Exercises 58, determine if the given set is a...Ch. 4.1 - In Exercises 58, determine if the given set is a...Ch. 4.1 - In Exercises 58, determine if the given set is a...
Ch. 4.1 - In Exercises 58, determine if the given set is a...Ch. 4.1 - Let H be the set of all vectors of the form...Ch. 4.1 - Let H be the set of all vectors of the form...Ch. 4.1 - Let W be the set of all vectors of the form...Ch. 4.1 - Let W be the set of all vectors of the form...Ch. 4.1 - Let v1 = [101], v2 = [213], v3 = [426], and w=...Ch. 4.1 - Let v1, v2, v3 be as in Exercise 13, and let w =...Ch. 4.1 - In Exercises 1518, let W be the set of all vectors...Ch. 4.1 - In Exercises 1518, let W be the set of all vectors...Ch. 4.1 - In Exercises 1518, let W be the set of all vectors...Ch. 4.1 - In Exercises 1518, let W be the set of all vectors...Ch. 4.1 - If a mass m is placed at the end of a spring, and...Ch. 4.1 - The set of all continuous real-valued functions...Ch. 4.1 - Determine if the set H of all matrices of the form...Ch. 4.1 - Let F be a fixed 32 matrix, and let H be the set...Ch. 4.1 - Prob. 24ECh. 4.1 - In Exercises 23—32, mark each statement True or...Ch. 4.1 - In Exercises 23—32, mark each statement True or...Ch. 4.1 - In Exercises 23—32, mark each statement True or...Ch. 4.1 - In Exercises 23—32, mark each statement True or...Ch. 4.1 - In Exercises 23—32, mark each statement True or...Ch. 4.1 - Prob. 32ECh. 4.1 - Exercises 2529 show how the axioms for a vector...Ch. 4.1 - Exercises 2529 show how the axioms for a vector...Ch. 4.1 - Exercises 2529 show how the axioms for a vector...Ch. 4.1 - Exercises 2529 show how the axioms for a vector...Ch. 4.1 - Suppose cu = 0 for some nonzero scalar c. Show...Ch. 4.1 - Let u and v be vectors in a vector space V, and...Ch. 4.1 - Let H and K be sub spaces of a vector space V. The...Ch. 4.1 - Given subspaces H and K of a vector space V, the...Ch. 4.1 - Suppose u1,..., up and v1,..., vq are vectors in a...Ch. 4.1 - [M] Show that w is in the subspace of 4 spanned by...Ch. 4.1 - [M] Determine if y is in the subspace of 4 spanned...Ch. 4.1 - [M] The vector space H = Span {1, cos2t, cos4t,...Ch. 4.2 - Let W = {[abc]:a3bc=0}. Show in two different ways...Ch. 4.2 - Let A = [735415524], v = [211], and w = [763]....Ch. 4.2 - Let A be an n n matrix. If Col A = Nul A, show...Ch. 4.2 - Determine if w = [134] is in Nul A, where A =...Ch. 4.2 - Determine if w = [532] is in Nul A, where A =...Ch. 4.2 - In Exercises 36, find an explicit description of...Ch. 4.2 - In Exercises 36, find an explicit description of...Ch. 4.2 - In Exercises 36, find an explicit description of...Ch. 4.2 - In Exercises 36, find an explicit description of...Ch. 4.2 - In Exercises 714, either use an appropriate...Ch. 4.2 - In Exercises 714, either use an appropriate...Ch. 4.2 - In Exercises 714, either use an appropriate...Ch. 4.2 - In Exercises 714, either use an appropriate...Ch. 4.2 - In Exercises 714, either use an appropriate...Ch. 4.2 - In Exercises 714, either use an appropriate...Ch. 4.2 - In Exercises 714, either use an appropriate...Ch. 4.2 - In Exercises 714, either use an appropriate...Ch. 4.2 - In Exercises 15 and 16, find A such that the given...Ch. 4.2 - Prob. 16ECh. 4.2 - For the matrices in Exercises 1720, (a) find k...Ch. 4.2 - For the matrices in Exercises 1720, (a) find k...Ch. 4.2 - For the matrices in Exercises 1720, (a) find k...Ch. 4.2 - For the matrices in Exercises 17-20, (a) find k...Ch. 4.2 - With A as in Exercise 17, find a nonzero vector in...Ch. 4.2 - With A as in Exercise 3, find a nonzero vector in...Ch. 4.2 - Let A=[61236] and w=[21]. Determine if w is in Col...Ch. 4.2 - Let A=[829648404] and w=[212]. Determine w is in...Ch. 4.2 - In Exercises 25—38, A denotes an mn matrix. Mark...Ch. 4.2 - Prob. 26ECh. 4.2 - Prob. 27ECh. 4.2 - Prob. 28ECh. 4.2 - Prob. 29ECh. 4.2 - Prob. 30ECh. 4.2 - In Exercises 25—38, A denotes an mn matrix. Mark...Ch. 4.2 - Prob. 35ECh. 4.2 - Prob. 37ECh. 4.2 - Prob. 38ECh. 4.2 - It can be shown that a solution of the system...Ch. 4.2 - Consider the following two systems of equations:...Ch. 4.2 - Prove Theorem 3 as follows: Given an m n matrix...Ch. 4.2 - Let T : V W be a linear transformation from a...Ch. 4.2 - Define T : p2 by T(p)=[p(0)p(1)]. For instance, if...Ch. 4.2 - Define a linear transformation T: p2 2 by...Ch. 4.2 - Let M22 be the vector space of all 2 2 matrices,...Ch. 4.2 - (Calculus required) Define T : C[0, 1 ] C[0, 1]...Ch. 4.2 - Let V and W be vector spaces, and let T : V W be...Ch. 4.2 - [M] Determine whether w is in the column space of...Ch. 4.2 - [M] Determine whether w is in the column space of...Ch. 4.2 - [M] Let a1,,a5 denote the columns of the matrix A,...Ch. 4.2 - [M] Let H = Span {v1, v2} and K = Span {v3, v4},...Ch. 4.3 - Let v1=[123] and v2=[279]. Determine if {v1, v2}...Ch. 4.3 - Let v1=[134], v2=[621], v3=[223], and v4=[489]....Ch. 4.3 - Let v1=[100], v2=[010], and H={[ss0]:sin}. Then...Ch. 4.3 - Let V and W be vector spaces, let T : V W and U :...Ch. 4.3 - Determine which sets in Exercises 1-8 are bases...Ch. 4.3 - Determine which sets in Exercises 1-8 are bases...Ch. 4.3 - Determine which sets in Exercises 1-8 are bases...Ch. 4.3 - Determine which sets in Exercises 1-8 are bases...Ch. 4.3 - Determine which sets in Exercises 1-8 are bases...Ch. 4.3 - Determine which sets in Exercises 1-8 are bases...Ch. 4.3 - Determine which sets in Exercises 1-8 are bases...Ch. 4.3 - Determine which sets in Exercises 1-8 are bases...Ch. 4.3 - Find bases for the null spaces of the matrices...Ch. 4.3 - Find bases for the null spaces of the matrices...Ch. 4.3 - Find a basis for the set of vectors in 3 in the...Ch. 4.3 - Find a basis for the set of vectors in 2 on the...Ch. 4.3 - In Exercises 13 and 14, assume that A is row...Ch. 4.3 - In Exercises 13 and 14, assume that A is row...Ch. 4.3 - In Exercises 15-18, find a basis for the space...Ch. 4.3 - In Exercises 15-18, find a basis for the space...Ch. 4.3 - In Exercises 15-18, find a basis for the space...Ch. 4.3 - In Exercises 15-18, find a basis for the space...Ch. 4.3 - Let v1=[437], v2=[192], v3=[7116], and H =...Ch. 4.3 - Let v1=[7495], v2=[4725], v3=[1534]. It can be...Ch. 4.3 - Prob. 21ECh. 4.3 - Prob. 22ECh. 4.3 - Prob. 23ECh. 4.3 - Prob. 24ECh. 4.3 - Prob. 25ECh. 4.3 - Prob. 26ECh. 4.3 - Prob. 27ECh. 4.3 - Suppose 4 = Span {v1,,v4}. Explain why {v1,,v4} is...Ch. 4.3 - Let B = {v1,..., vn} be a linearly independent set...Ch. 4.3 - Let v1=[101], v2=[011], v3=[010], and let H be the...Ch. 4.3 - In the vector space of all real-valued functions,...Ch. 4.3 - Let V be the vector space of functions that...Ch. 4.3 - (RLC circuit) The circuit in the figure consists...Ch. 4.3 - Exercises 29 and 30 show that every basis for n...Ch. 4.3 - Exercises 29 and 30 show that every basis for n...Ch. 4.3 - Exercises 31 and 32 reveal an important connection...Ch. 4.3 - Exercises 31 and 32 reveal an important connection...Ch. 4.3 - Consider the polynomials p1(t) = 1 + t2 and p2(t)...Ch. 4.3 - Consider the polynomials p1(t) = 1 + t, p2(t) = 1 ...Ch. 4.3 - Let V be a vector space that contains a linearly...Ch. 4.3 - [M] Let H = Span {u1, u2, u3} and K = Span{v1,v2,...Ch. 4.3 - [M] Show that {t, sin t, cos 2t, sin t cos t} is a...Ch. 4.4 - Let b1=[100], b2=[340], b3=[363], and x=[823]. a....Ch. 4.4 - The set B = {1 + t, 1 + t2, t + t2} is a basis for...Ch. 4.4 - In Exercises 1-4, find the vector x determined by...Ch. 4.4 - In Exercises 1-4, find the vector x determined by...Ch. 4.4 - In Exercises 1-4, find the vector x determined by...Ch. 4.4 - In Exercises 1-4, find the vector x determined by...Ch. 4.4 - In Exercises 5-8, find the coordinate vector [ x...Ch. 4.4 - In Exercises 5-8, find the coordinate vector [ x...Ch. 4.4 - In Exercises 5-8, find the coordinate vector [ x...Ch. 4.4 - In Exercises 5-8, find the coordinate vector [ x...Ch. 4.4 - In Exercises 9 and 10, find the...Ch. 4.4 - In Exercises 9 and 10, find the...Ch. 4.4 - In Exercises 11 and 12, use an inverse matrix to...Ch. 4.4 - In Exercises 11 and 12, use an inverse matrix to...Ch. 4.4 - The set B = {1 + t2, t + t2, 1 + 2t + t2} is a...Ch. 4.4 - The set B = {1 t2, t t2, 2 2t + t2} is a basis...Ch. 4.4 - Prob. 15ECh. 4.4 - The vectors v1=[13], v2=[28], v3=[37] span 2 but...Ch. 4.4 - Let B = {b1,...,bn} be a basis for a vector space...Ch. 4.4 - Let S be a finite set in a vector space V with the...Ch. 4.4 - Suppose {v1,...,v4} is a linearly dependent...Ch. 4.4 - Let B={[14],[29]}. Since the coordinate mapping...Ch. 4.4 - Exercises 23-26 concern a vector space V, a basis...Ch. 4.4 - Exercises 23-26 concern a vector space V, a basis...Ch. 4.4 - Exercises 23-26 concern a vector space V, a basis...Ch. 4.4 - Exercises 23-26 concern a vector space V, a basis...Ch. 4.4 - In Exercises 27-30, use coordinate vectors to test...Ch. 4.4 - In Exercises 27-30, use coordinate vectors to test...Ch. 4.4 - In Exercises 27-30, use coordinate vectors to test...Ch. 4.4 - In Exercises 27-30, use coordinate vectors to test...Ch. 4.4 - Use coordinate vectors to test whether the...Ch. 4.4 - Let p1 (t) = 1 + t2, p2(t) = t 3t2, p3 (t) = 1 +...Ch. 4.4 - In Exercises 33 and 34, determine whether the sets...Ch. 4.4 - In Exercises 33 and 34, determine whether the sets...Ch. 4.4 - Prob. 39ECh. 4.4 - [M] Let H = Span{v1,v2, v3} and B ={v1,v2, v3}....Ch. 4.4 - [M] Exercises 37 and 38 concern the crystal...Ch. 4.4 - [M] Exercises 37 and 38 concern the crystal...Ch. 4.5 - Decide whether each statement is True or False,...Ch. 4.5 - Let H and K be subspaces of a vector space V. In...Ch. 4.5 - For each subspace in Exercises 1-8, (a) find a...Ch. 4.5 - For each subspace in Exercises 1-8, (a) find a...Ch. 4.5 - For each subspace in Exercises 1-8, (a) find a...Ch. 4.5 - For each subspace in Exercises 1-8, (a) find a...Ch. 4.5 - For each subspace in Exercises 1-8, (a) find a...Ch. 4.5 - For each subspace in Exercises 1-8, (a) find a...Ch. 4.5 - For each subspace in Exercises 1-8, (a) find a...Ch. 4.5 - For each subspace in Exercises 1-8, (a) find a...Ch. 4.5 - In Exercises 11 and 12, find the dimension of the...Ch. 4.5 - In Exercises 11 and 12, find the dimension of the...Ch. 4.5 - Determine the dimensions of Nul A and Col A for...Ch. 4.5 - Determine the dimensions of Nul A and Col A for...Ch. 4.5 - Determine the dimensions of Nul A and Col A for...Ch. 4.5 - Determine the dimensions of Nul A and Col A for...Ch. 4.5 - Determine the dimensions of Nul A, Col A, and Row...Ch. 4.5 - Determine the dimensions of Nul A and Col A for...Ch. 4.5 - In Exercises 17—26, V is a vector space and A is...Ch. 4.5 - Prob. 18ECh. 4.5 - Prob. 22ECh. 4.5 - Prob. 24ECh. 4.5 - Prob. 25ECh. 4.5 - Prob. 26ECh. 4.5 - The first four Hermite polynomials are 1, 2t, 2 +...Ch. 4.5 - The first four Laguerre polynomials are 1, 1 t, 2...Ch. 4.5 - Let B be the basis of 3 consisting of the Hermite...Ch. 4.5 - Let S be a subset of an n-dimensional vector space...Ch. 4.5 - Let H be an n-dimensional subspace of an...Ch. 4.5 - Prob. 36ECh. 4.6 - Let B = {b1, b2} and C = {c1, c2} be bases for a...Ch. 4.6 - Let B = {b1, b2} and C = {c1, c2} be bases for a...Ch. 4.6 - Let u = {u1, u2} and w = {w1, w2} be bases for V,...Ch. 4.6 - Let A = {a1, a2, a3} and D = {d1, d2, d3} be bases...Ch. 4.6 - Let A = {a1, a2, a3} and B = {b1, b2, b3} be bases...Ch. 4.6 - Let D = {d1, d2, d3} and F = {f1, f2, f3} be bases...Ch. 4.6 - In Exercises 7-10, let B = {b1, b2} and C = {c1,...Ch. 4.6 - In Exercises 7-10, let B = {b1, b2} and C = {c1,...Ch. 4.6 - In Exercises 7-10, let B = {b1, b2} and C = {c1,...Ch. 4.6 - In Exercises 7-10, let B = {b1, b2} and C = {c1,...Ch. 4.6 - In 2 find the change-of-coordinates matrix from...Ch. 4.6 - In 2 find the change-of-coordinates matrix from...Ch. 4.6 - Exercises 15 and 16 provide a proof of Theorem 15....Ch. 4.6 - Prob. 18ECh. 4.6 - Prob. 19ECh. 4.6 - [M] Let P=[121350461],v1=[223],v2=[852],v3=[726]...Ch. 4.6 - Let B = {b1, b2}, C = {c1, c2}, and D = {d1, d2}...Ch. 4.8 - Verify that the signals in Exercises 1 and 2 are...Ch. 4.8 - Prob. 2ECh. 4.8 - Prob. 3ECh. 4.8 - Show that the signals in Exercises 3-6 form a...Ch. 4.8 - Show that the signals in Exercises 3-6 form a...Ch. 4.8 - Show that the signals in Exercises 3-6 form a...Ch. 4.8 - Prob. 7ECh. 4.8 - Prob. 8ECh. 4.8 - Prob. 9ECh. 4.8 - Prob. 10ECh. 4.8 - Prob. 11ECh. 4.8 - Prob. 12ECh. 4.8 - In Exercises 13-16, find a basis for the solution...Ch. 4.8 - In Exercises 13-16, find a basis for the solution...Ch. 4.8 - In Exercises 13-16, find a basis for the solution...Ch. 4.8 - In Exercises 13-16, find a basis for the solution...Ch. 4.8 - Exercises 17 and 18 concern a simple model of the...Ch. 4.8 - Exercises 17 and 18 concern a simple model of the...Ch. 4.8 - Prob. 21ECh. 4.8 - A lightweight cantilevered beam is supported at N...Ch. 4.8 - Prob. 25ECh. 4.8 - Prob. 26ECh. 4.8 - Prob. 27ECh. 4.8 - Prob. 28ECh. 4.8 - Prob. 29ECh. 4.8 - Prob. 30ECh. 4.8 - Prob. 31ECh. 4.8 - Write the difference equations in Exercises 29 and...Ch. 4.8 - Prob. 33ECh. 4.8 - Prob. 34ECh. 4.8 - Let yk = k2 and zk = 2k|k|. Are the signals {yk}...Ch. 4 - Find a basis for the set of all vectors of the...Ch. 4 - Let u1=[246], u2=[125], b=[b1b2b3], and W =...Ch. 4 - Explain what is wrong with the following...Ch. 4 - Consider the polynomials p1(t) = 1 +t, p2(t) = 1 ...Ch. 4 - Prob. 24SECh. 4 - Prob. 25SECh. 4 - Prob. 26SECh. 4 - Let T : n m be a linear transformation. a. What...Ch. 4 - Prob. 28SECh. 4 - Let S be a finite minimal spanning set of a vector...Ch. 4 - Prob. 30SECh. 4 - Prob. 33SECh. 4 - The concept of rank plays an important role in the...Ch. 4 - Determine if the matrix pairs in Exercises 19-22...Ch. 4 - Determine if the matrix pairs in Exercises 19-22...Ch. 4 - Determine if the matrix pairs in Exercises 19-22...Ch. 4 - Prob. 40SE
Additional Math Textbook Solutions
Find more solutions based on key concepts
Explain the meaning of the term “statistically significant difference” in statistics terminology.
Intro Stats, Books a la Carte Edition (5th Edition)
IQ Scores. In Exercises 9–12, find the indicated IQ score and round to the nearest whole number. The graphs dep...
Elementary Statistics (13th Edition)
Matching In Exercises 17–20, match the level of confidence c with the appropriate confidence interval. Assume e...
Elementary Statistics: Picturing the World (7th Edition)
Children of First Ladies This list represents the number of children for the first six “first ladies” of the Un...
Introductory Statistics
The given inequality and graph it.
Pre-Algebra Student Edition
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Let u, v, and w be any three vectors from a vector space V. Determine whether the set of vectors {vu,wv,uw} is linearly independent or linearly dependent.arrow_forwardIn Exercises 14-17, determine whether the given set, together with the specified operations of addition and scalar multiplication, is a complex vector space. If it is not, list all of the axioms that fail to hold. The set of all vectors in 2 of the form [zz], with the usual vector addition and scalar multiplicationarrow_forwardLet v1, v2, and v3 be three linearly independent vectors in a vector space V. Is the set {v12v2,2v23v3,3v3v1} linearly dependent or linearly independent? Explain.arrow_forward
- Take this test to review the material in Chapters 4 and 5. After you are finished, check your work against the answers in the back of the book. Prove that the set of all singular 33 matrices is not a vector space.arrow_forwardLet V be the set of all positive real numbers. Determine whether V is a vector space with the operations shown below. x+y=xyAddition cx=xcScalar multiplication If it is, verify each vector space axiom; if it is not, state all vector space axioms that fail.arrow_forwardProve that if A is similar to B and A is diagonalizable, then B is diagonalizable.arrow_forward
- Consider the vectors u=(6,2,4) and v=(1,2,0) from Example 10. Without using Theorem 5.9, show that among all the scalar multiples cv of the vector v, the projection of u onto v is the closest to u that is, show that d(u,projvu) is a minimum.arrow_forwardIllustrate properties 110 of Theorem 4.2 for u=(2,1,3,6), v=(1,4,0,1), w=(3,0,2,0), c=5, and d=2. THEOREM 4.2Properties of Vector Addition and Scalar Multiplication in Rn. Let u,v, and w be vectors in Rn, and let c and d be scalars. 1. u+v is vector in Rn. Closure under addition 2. u+v=v+u Commutative property of addition 3. (u+v)+w=u+(v+w) Associative property of addition 4. u+0=u Additive identity property 5. u+(u)=0 Additive inverse property 6. cu is a vector in Rn. Closure under scalar multiplication 7. c(u+v)=cu+cv Distributive property 8. (c+d)u=cu+du Distributive property 9. c(du)=(cd)u Associative property of multiplication 10. 1(u)=u Multiplicative identity propertyarrow_forwardIdentify the zero element and standard basis for each of the isomorphic vector spaces in Example 12. EXAMPLE 12 Isomorphic Vector spaces The vector spaces below are isomorphic to each other. a. R4=4space b. M4,1=spaceofall41matrices c. M2,2=spaceofall22matrices d. P3=spaceofallpolynomialsofdegree3orless e. V={(x1,x2,x3,x4,0):xiisarealnumber} subspace of R5arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Vector Spaces | Definition & Examples; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=72GtkP6nP_A;License: Standard YouTube License, CC-BY
Understanding Vector Spaces; Author: Professor Dave Explains;https://www.youtube.com/watch?v=EP2ghkO0lSk;License: Standard YouTube License, CC-BY