Question
Book Icon
Chapter 40, Problem 46CP

(a)

To determine

Plot of wave function as a function of x.

(a)

Expert Solution
Check Mark

Answer to Problem 46CP

The wave function was plotted as a function of x.

Explanation of Solution

Write the given wave function of the electron.

    ψ(x)={Aeαxforx>0Ae+αxforx<0                                                                                    (I)

Here, ψ(x) is the wave function, A is the constant, α is a constant.

Write the formula to calculate the probability of finding a particle in a certain range.

    P=abψ*ψdx:                                                                                                           (II)

Here, P is the probability, ψ* is the complex conjugate of the wave function, [a,b] is the range in which the probability is found out.

Refer equation (I) and plot the wave function as a function of x.

Figure 1 below shows the plot of wave function.

Bundle: Physics For Scientists And Engineers With Modern Physics, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Multi-term, Chapter 40, Problem 46CP , additional homework tip  1

Conclusion:

The wave function was plotted as a function of x.

(b)

To determine

Plot of probability density as a function of x.

(b)

Expert Solution
Check Mark

Answer to Problem 46CP

The probability density was plotted as a function of x.

Explanation of Solution

Write the given wave function of the electron.

    ψ(x)={Aeαxforx>0Ae+αxforx<0                                                                                    (I)

Here, ψ(x) is the wave function, A is the constant, α is a constant.

Write the formula to calculate the probability of finding a particle in a certain range.

    P=abψ*ψdx:                                                                                                          (II)

Here, P is the probability, ψ* is the complex conjugate of the wave function, [a,b] is the range in which the probability is found out.

Refer equation (II) and plot the probability density as a function of x.

Figure 2 below shows the plot of wave function.

Bundle: Physics For Scientists And Engineers With Modern Physics, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Multi-term, Chapter 40, Problem 46CP , additional homework tip  2

Conclusion:

The probability density was plotted as a function of x.

(c)

To determine

To show that ψ(x) is physically reasonable wave function.

(c)

Expert Solution
Check Mark

Answer to Problem 46CP

The ψ(x) satisfy all the conditions to be a reasonable wave function. Thus ψ(x) is a physically reasonable wave function.

Explanation of Solution

Write the given wave function of the electron.

    ψ(x)={Aeαxforx>0Ae+αxforx<0                                                                                     (I)

Here, ψ(x) is the wave function, A is the constant, α is a constant.

For the wave function to be a reasonable wave function, there are set of condition.

The ψ(x) has to be continuous to be a reasonable wave function. The given wave function is continuous everywhere except at infinity.

As x± the ψ(x) must go to zero to be a reasonable wave function. The given wave function satisfy this condition.

The ψ(x) can also be normalized which is an essential requirement to be a wave function.

The ψ(x) satisfy all the conditions to be a reasonable wave function. Thus ψ(x) is a physically reasonable wave function.

Conclusion:

The ψ(x) satisfy all the conditions to be a reasonable wave function. Thus ψ(x) is a physically reasonable wave function.

(d)

To determine

To normalize the wave function.

(d)

Expert Solution
Check Mark

Answer to Problem 46CP

The normalization constant of the given wave function is α.

Explanation of Solution

Write the given wave function of the electron.

    ψ(x)={Aeαxforx>0Ae+αxforx<0                                                                                     (I)

Here, ψ(x) is the wave function, A is the constant, α is a constant.

Write the condition for normalized wave function.

    |ψ|2dx=1

The wave function is symmetric. Thus re-write the above condition.

    20|ψ|2dx=1

Substitute equation (I) in the above equation.

    2A20e2αxdx=1(2A22α)(ee0)=12A22α=1A=α

Conclusion:

The normalization constant of the given wave function is α.

(e)

To determine

The probability of finding the electron in the range 12αx12α.

(e)

Expert Solution
Check Mark

Answer to Problem 46CP

The probability of finding the particle in the range 12αx12α is 0.632.

Explanation of Solution

Refer section (d) and write the given normalized wave function of the electron.

    ψ(x)={αeαxforx>0αe+αxforx<0                                                                                  (II)

Here, ψ(x) is the wave function, and α is a constant.

Write the formula to calculate the probability of finding a particle in a certain range.

    P=ab|ψ|2dx:                                                                                                      (III)

Here, P is the probability, and [a,b] is the range in which the probability is found out.

Refer equation (II) in equation (III) to determine probability in range 12αx12α.

    P=(a)21/2α1/2αe2αxdx=2(a)2x=01/2αe2αxdx=(2α2α)(e2α/2α1)=(1e1)=0.632

Conclusion:

The probability of finding the particle in the range 12αx12α is 0.632.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Two concrete spans of a 234 m long bridge are placed end to end so that no room is allowed for expansion (Figure a). Each span therefore has a length of L0 = 117 m.  If the temperature increases by 17.8 °C, what is the height y to which the spans rise when they buckle (Figure b)? (The coefficient of linear expansion of concrete is 1.20⋅10−51.20⋅10-5  °C−1.)
Monkey D. Luffy, from One Piece can inflate himself like a balloon to a size of 6.98 m3 by inhaling 1.74⋅10^26 molecules of air. If the air is at 20.9 ˚C, the pressure inside Luffy is 101277.062 Pa. kB=1.38⋅10^−23  J/K. The total internal energy of the gas inside Luffy is 1065333.93 J. How fast, on average, is the air molecules inside Luffy traveling at?  The average mass of an air molecule (considering the various gasses involved) is 4.51 x 10^-26 kg.
The Dungeons & Dragons spell “Stinking Cloud” fills a 949 m^3 volume of air with a cloud of gas. The pressure of the gas is the same as the air, 101,325 Pa, and is at 29.2°C. There are 2.304x10^28 molecules of gas. What is the total internal energy of the gas?
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill