Calculus & Its Applications (14th Edition)
14th Edition
ISBN: 9780134437774
Author: Larry J. Goldstein, David C. Lay, David I. Schneider, Nakhle H. Asmar
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 9RE
Simplify the following.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The graph of f(x) is given below. Select each true statement about the continuity of f(x) at x = 1.
Select all that apply:
☐ f(x) is not continuous at x = 1 because it is not defined at x = 1.
☐ f(x) is not continuous at x = 1 because lim f(x) does not exist.
x+1
☐ f(x) is not continuous at x = 1 because lim f(x) ‡ f(1).
x+→1
☐ f(x) is continuous at x = 1.
a is done please show b
A homeware company has been approached to manufacture a cake tin in the shape
of a "ghost" from the Pac-Man video game to celebrate the 45th Anniversary of the
games launch. The base of the cake tin has a characteristic dimension / and is
illustrated in Figure 1 below, you should assume the top and bottom of the shape
can be represented by semi-circles. The vertical sides of the cake tin have a height of
h. As the company's resident mathematician, you need to find the values of r and h
that minimise the internal surface area of the cake tin given that the volume of the
tin is Vfixed-
2r
Figure 1 - Plan view of the "ghost" cake tin base.
(a) Show that the Volume (V) of the cake tin as a function of r and his
2(+1)²h
V = 2
Chapter 4 Solutions
Calculus & Its Applications (14th Edition)
Ch. 4.1 - Can a function such as f(x)=53x be written in the...Ch. 4.1 - Solve the equation 7263x=28.Ch. 4.1 - Prob. 1ECh. 4.1 - Prob. 2ECh. 4.1 - Write each expression in Exercises 1-14 in the...Ch. 4.1 - Write each expression in Exercises 1-14 in the...Ch. 4.1 - Write each expression in Exercises 1-14 in the...Ch. 4.1 - Write each expression in Exercises 1-14 in the...Ch. 4.1 - Prob. 7ECh. 4.1 - Write each expression in Exercises 1-14 in the...
Ch. 4.1 - Write each expression in Exercises 1-14 in the...Ch. 4.1 - Prob. 10ECh. 4.1 - Prob. 11ECh. 4.1 - Write each expression in Exercises 1-14 in the...Ch. 4.1 - Prob. 13ECh. 4.1 - Prob. 14ECh. 4.1 - Find a number b such that the function f(x)=32x...Ch. 4.1 - Find b so that 8x/3=bx for all x.Ch. 4.1 - Solve the following equations for x. 52x=52Ch. 4.1 - Solve the following equations for x. 10x=102Ch. 4.1 - Solve the following equations for x....Ch. 4.1 - Solve the following equations for x....Ch. 4.1 - Solve the following equations for x. 101x=100Ch. 4.1 - Solve the following equations for x. 24x=8Ch. 4.1 - Solve the following equations for x. 3(2.7)5x=8.1Ch. 4.1 - Solve the following equations for x....Ch. 4.1 - Solve the following equations for x. (2x+123)2=2Ch. 4.1 - Solve the following equations for x. (32x32)4=3Ch. 4.1 - Solve the following equations for x. 23x=425xCh. 4.1 - Solve the following equations for x. 35x3x3=0Ch. 4.1 - Solve the following equations for x. (1+x)2x52x=0Ch. 4.1 - Prob. 30ECh. 4.1 - Solve the following equations for x. 2x822x=0Ch. 4.1 - Prob. 32ECh. 4.1 - Solve the following equations for x. [Hint: In...Ch. 4.1 - Prob. 34ECh. 4.1 - Solve the following equations for x. [Hint: In...Ch. 4.1 - Prob. 36ECh. 4.1 - The expressions in Exercises 37-42 may be factored...Ch. 4.1 - The expressions in Exercises 37-42 may be factored...Ch. 4.1 - The expressions in Exercises 37-42 may be factored...Ch. 4.1 - The expressions in Exercises 37-42 may be factored...Ch. 4.1 - The expressions in Exercises 37-42 may be factored...Ch. 4.1 - Prob. 42ECh. 4.1 - Prob. 43ECh. 4.1 - Prob. 44ECh. 4.1 - Prob. 45ECh. 4.2 - Solve the following equation for x: e6x=e3.Ch. 4.2 - Differentiate y=(x+ex)4Ch. 4.2 - Show that ddx(3x)|x=01.1 by calculating the slope...Ch. 4.2 - Show that ddx(2.7x)|x=0.99 by calculating the...Ch. 4.2 - In Exercises 3-6, compute the given derivatives...Ch. 4.2 - Prob. 4ECh. 4.2 - Prob. 5ECh. 4.2 - Prob. 6ECh. 4.2 - Write each expression in the form ekx for a...Ch. 4.2 - Write each expression in the form ekx for a...Ch. 4.2 - Write each expression in the form ekx for a...Ch. 4.2 - Write each expression in the form ekx for a...Ch. 4.2 - Write each expression in the form ekx for a...Ch. 4.2 - Prob. 12ECh. 4.2 - Solve each equation for x. e5x=e20Ch. 4.2 - Prob. 14ECh. 4.2 - Solve each equation for x. ex22x=e8Ch. 4.2 - Prob. 16ECh. 4.2 - Solve each equation for x. ex(x21)=0Ch. 4.2 - Solve each equation for x. 4ex(x2+1)=0Ch. 4.2 - Find an equation of the tangent line to the graph...Ch. 4.2 - Prob. 20ECh. 4.2 - Use the first and second derivative rules from...Ch. 4.2 - Prob. 22ECh. 4.2 - Suppose that A=(a,b) is a point on the graph of...Ch. 4.2 - Find the slope-point form of the equation of the...Ch. 4.2 - Differentiate the following functions. y=3ex7xCh. 4.2 - Differentiate the following functions. y=2x+45ex4Ch. 4.2 - Differentiate the following functions. y=xexCh. 4.2 - Differentiate the following functions....Ch. 4.2 - Differentiate the following functions....Ch. 4.2 - Differentiate the following functions....Ch. 4.2 - Differentiate the following functions. y=exx+1Ch. 4.2 - Prob. 32ECh. 4.2 - Differentiate the following functions. y=ex1ex+1Ch. 4.2 - Differentiate the following functions. y=ex+1Ch. 4.2 - The graph of y=xex has one extreme point. Find its...Ch. 4.2 - Prob. 36ECh. 4.2 - Find the point on the graph of y=(1+x2)ex where...Ch. 4.2 - Prob. 38ECh. 4.2 - Find the slope of the tangent line to the curve...Ch. 4.2 - Find the slope of the tangent line to the curve...Ch. 4.2 - Find the equation of the tangent line to the curve...Ch. 4.2 - Find the equation of the tangent line to the curve...Ch. 4.2 - Find the first and second derivatives....Ch. 4.2 - Find the first and second derivatives. f(x)=exxCh. 4.2 - Compute the following derivatives. ddx(5ex)...Ch. 4.2 - Prob. 46ECh. 4.2 - Prob. 47ECh. 4.2 - Prob. 48ECh. 4.2 - Prob. 49ECh. 4.2 - Prob. 50ECh. 4.2 - Prob. 51ECh. 4.2 - Prob. 52ECh. 4.2 - Prob. 53ECh. 4.2 - Prob. 54ECh. 4.2 - Prob. 55ECh. 4.2 - Prob. 56ECh. 4.3 - Differentiate tet2Ch. 4.3 - Differentiate [ e3x(1+e6x) ]12.Ch. 4.3 - Differentiate the following functions. f(x)=e2x+3Ch. 4.3 - Differentiate the following functions. f(x)=e3x2Ch. 4.3 - Differentiate the following functions. f(x)=e4x2xCh. 4.3 - Differentiate the following functions....Ch. 4.3 - Differentiate the following functions. f(x)=eexCh. 4.3 - Differentiate the following functions. f(x)=e1xCh. 4.3 - Differentiate the following functions. f(x)=exCh. 4.3 - Differentiate the following functions. f(x)=ex2+1Ch. 4.3 - Differentiate the following functions. f(x)=7ex7Ch. 4.3 - Differentiate the following functions. f(x)=10ex25Ch. 4.3 - Differentiate the following functions....Ch. 4.3 - Differentiate the following functions....Ch. 4.3 - Differentiate the following functions....Ch. 4.3 - Differentiate the following functions....Ch. 4.3 - Differentiate the following functions....Ch. 4.3 - Differentiate the following functions. f(x)=eeexCh. 4.3 - Differentiate the following functions....Ch. 4.3 - Differentiate the following functions....Ch. 4.3 - Differentiate the following functions. f(x)=ex+1Ch. 4.3 - Differentiate the following functions. f(x)=eexCh. 4.3 - In Exercises 21-26, simplify the function before...Ch. 4.3 - In Exercises 21-26, simplify the function before...Ch. 4.3 - In Exercises 21-26, simplify the function before...Ch. 4.3 - In Exercises 21-26, simplify the function before...Ch. 4.3 - In Exercises 21-26, simplify the function before...Ch. 4.3 - In Exercises 21-26, simplify the function before...Ch. 4.3 - In Exercises 27-32, find the values of x at which...Ch. 4.3 - In Exercises 27-32, find the values of x at which...Ch. 4.3 - In Exercises 27-32, find the values of x at which...Ch. 4.3 - In Exercises 27-32, find the values of x at which...Ch. 4.3 - In Exercises 27-32, find the values of x at which...Ch. 4.3 - In Exercises 27-32, find the values of x at which...Ch. 4.3 - An Investment Portfolio The value of an investment...Ch. 4.3 - Depreciation of Assets The value of the computer t...Ch. 4.3 - The Most Expensive Artwork to Date The highest...Ch. 4.3 - Appreciation of Assets A painting purchased in...Ch. 4.3 - Velocity and Acceleration The velocity of the...Ch. 4.3 - Velocity and Acceleration Suppose the velocity of...Ch. 4.3 - Heights of a Plant The height of a certain plant,...Ch. 4.3 - Heights of a Plant The length of a certain weed,...Ch. 4.3 - Gompertz Growth Curve Let aandb be positive...Ch. 4.3 - Find dydx if y=e(110)ex2.Ch. 4.3 - Size of Tumor In a study, a cancerous tumor was...Ch. 4.3 - Height of a Plant Let f(t) be the function from...Ch. 4.4 - Find lne.Ch. 4.4 - Solve e3x=2 using the natural logarithm function.Ch. 4.4 - Find ln(e).Ch. 4.4 - Find ln(1e2).Ch. 4.4 - If ex=5, Write x in terms of the natural...Ch. 4.4 - If ex=3.2, Write x in terms of the natural...Ch. 4.4 - If lnx=1, Write x using the exponential function.Ch. 4.4 - If lnx=4.5, Write x using the exponential...Ch. 4.4 - Simplify the following expression. lne3Ch. 4.4 - Simplify the following expression. eln4.1Ch. 4.4 - Simplify the following expression. eeln1Ch. 4.4 - Simplify the following expression. ln(e2lne)Ch. 4.4 - Simplify the following expression. ln(lne)Ch. 4.4 - Simplify the following expression. e4ln1Ch. 4.4 - Simplify the following expression. e2lnxCh. 4.4 - Simplify the following expression. exln2Ch. 4.4 - Simplify the following expression. e2ln7Ch. 4.4 - Simplify the following expression. e2ln7Ch. 4.4 - Simplify the following expression. elnx+ln2Ch. 4.4 - Simplify the following expression. eln32lnxCh. 4.4 - Solve the following equations for x. e2x=5Ch. 4.4 - Solve the following equations for x. e13x=4Ch. 4.4 - Solve the following equations for x. ln(4x)=12Ch. 4.4 - Prob. 22ECh. 4.4 - Solve the following equations for x. lnx2=9Ch. 4.4 - Prob. 24ECh. 4.4 - Solve the following equations for x. 6e0.00012x=3Ch. 4.4 - Prob. 26ECh. 4.4 - Solve the following equations for x. ln3x=ln5Ch. 4.4 - Prob. 28ECh. 4.4 - Solve the following equations for x. ln(ln3x)=0Ch. 4.4 - Prob. 30ECh. 4.4 - Solve the following equations for x. 2ex/39=0Ch. 4.4 - Prob. 32ECh. 4.4 - Prob. 33ECh. 4.4 - Prob. 34ECh. 4.4 - Prob. 35ECh. 4.4 - Prob. 36ECh. 4.4 - Solve the following equations for x. 4exe2x=6Ch. 4.4 - Prob. 38ECh. 4.4 - The graph of f(x)=5x+ex is shown in fig. 4. Find...Ch. 4.4 - Prob. 40ECh. 4.4 - Prob. 41ECh. 4.4 - Prob. 42ECh. 4.4 - Prob. 43ECh. 4.4 - Find the x-intercept of y=(x1)2ln(x+1),x1.Ch. 4.4 - In Exercise 45- 46, find the coordinates of each...Ch. 4.4 - In Exercise 45- 46, find the coordinates of each...Ch. 4.4 - Solve for t. e0.05t4e0.06t=0Ch. 4.4 - Solve for t. 4e0.01t3e0.04t=0Ch. 4.4 - Prob. 49ECh. 4.4 - Wind Velocity Under certain geographic conditions,...Ch. 4.4 - Prob. 51ECh. 4.4 - Prob. 52ECh. 4.4 - Prob. 53ECh. 4.4 - Prob. 54ECh. 4.4 - Prob. 55ECh. 4.5 - Differentiate f(x)=1ln(x4+5).Ch. 4.5 - Differentiate f(x)=ln(lnx).Ch. 4.5 - Differentiate the following functions. y=3lnx+ln2Ch. 4.5 - Differentiate the following functions. y=lnxln3Ch. 4.5 - Differentiate the following functions. y=x2lnx2Ch. 4.5 - Differentiate the following functions. y=3lnxxCh. 4.5 - Differentiate the following functions. y=exlnxCh. 4.5 - Differentiate the following functions. y=e1+lnxCh. 4.5 - Differentiate the following functions. y=lnxxCh. 4.5 - Prob. 8ECh. 4.5 - Differentiate the following functions. y=lnx2Ch. 4.5 - Prob. 10ECh. 4.5 - Differentiate the following functions. y=ln(1x)Ch. 4.5 - Prob. 12ECh. 4.5 - Differentiate the following functions. y=ln(3x4x2)Ch. 4.5 - Prob. 14ECh. 4.5 - Differentiate the following functions. y=1lnxCh. 4.5 - Differentiate the following functions. y=lnxln2xCh. 4.5 - Differentiate the following functions. y=lnxln2xCh. 4.5 - Differentiate the following functions. y=(lnx)2Ch. 4.5 - Differentiate the following functions....Ch. 4.5 - Differentiate the following functions....Ch. 4.5 - Find the second derivatives. d2dt2(t2lnt)Ch. 4.5 - Find the second derivatives. d2dt2ln(lnt)Ch. 4.5 - The graph of f(x)=(lnx)/x is shown in Fig.4. Find...Ch. 4.5 - The graph of f(x)=x/(lnx+x) is shown in Fig.5....Ch. 4.5 - Write the equation of the tangent line to the...Ch. 4.5 - The function f(x)=(lnx+1)/x has a relative extreme...Ch. 4.5 - Determine the domain of definition of the given...Ch. 4.5 - Find the equations of the tangent lines to the...Ch. 4.5 - Find the coordinates of the relative extreme point...Ch. 4.5 - Repeat the previous exercise with y=xlnx.Ch. 4.5 - The graphs of y=x+lnx and y=ln2x are shown in...Ch. 4.5 - Prob. 32ECh. 4.5 - Prob. 33ECh. 4.5 - The function y=2x2ln4x (x0) has one minimum point....Ch. 4.5 - A Demand Equation If the demand equation for a...Ch. 4.5 - Total Revenue Suppose that the total revenue...Ch. 4.5 - An Area ProblemFind the maximum area of a...Ch. 4.5 - Analysis of the Effectiveness of an Insect...Ch. 4.6 - Differentiate f(x)=ln[ exx(x+1)6 ].Ch. 4.6 - Use logarithmic differentiation to differentiate...Ch. 4.6 - Simplify the following expressions. ln5+lnxCh. 4.6 - Simplify the following expressions. lnx5lnx3Ch. 4.6 - Simplify the following expressions. 12ln9Ch. 4.6 - Simplify the following expressions. 3ln12+ln16Ch. 4.6 - Simplify the following expressions. ln4+ln6ln12Ch. 4.6 - Simplify the following expressions. ln2lnx+ln3Ch. 4.6 - Simplify the following expressions. e2lnxCh. 4.6 - Simplify the following expressions. 32ln45ln2Ch. 4.6 - Simplify the following expressions. 5lnx12lny+3lnzCh. 4.6 - Simplify the following expressions. elnx2+3lnyCh. 4.6 - Simplify the following expressions. lnxlnx2+lnx4Ch. 4.6 - Prob. 12ECh. 4.6 - Simplify the following expressions. Which is...Ch. 4.6 - Simplify the following expressions. Which is...Ch. 4.6 - Evaluate the given expressions. Use ln2=.69 and...Ch. 4.6 - Evaluate the given expressions. Use ln2=.69 and...Ch. 4.6 - Evaluate the given expressions. Use ln2=.69 and...Ch. 4.6 - Prob. 18ECh. 4.6 - Which of the following is the same as 4ln2x? a....Ch. 4.6 - Prob. 20ECh. 4.6 - Which of the following is the same as ln8x2ln2x?...Ch. 4.6 - Which of the following is the same as ln9x2? a....Ch. 4.6 - Solve the given equation for x. lnxlnx2+ln3=0Ch. 4.6 - Solve the given equation for x. lnx2ln3=0Ch. 4.6 - Solve the given equation for x. lnx42lnx=1Ch. 4.6 - Solve the given equation for x. lnx2ln2x+1=0Ch. 4.6 - Solve the given equation for x. (lnx)21=0Ch. 4.6 - Solve the given equation for x. 3lnxln3x=0Ch. 4.6 - Solve the given equation for x. lnx=lnxCh. 4.6 - Solve the given equation for x. 2(lnx)2+lnx1=0Ch. 4.6 - Solve the given equation for x. ln(x+1)ln(x2)=1Ch. 4.6 - Solve the given equation for x....Ch. 4.6 - Differentiate. y=ln[(x+5)(2x1)(4x)]Ch. 4.6 - Differentiate. y=ln[(x+1)(2x+1)(3x+1)]Ch. 4.6 - Differentiate. y=ln[(1+x)2(2+x)3(3+x)4]Ch. 4.6 - Differentiate. y=ln[e2x(x3+1)(x4+5x)]Ch. 4.6 - Differentiate. y=ln[xex2+1]Ch. 4.6 - Prob. 38ECh. 4.6 - Differentiate. y=ln(x+1)4ex1Ch. 4.6 - Differentiate. y=ln(x+1)4(x3+2)x1Ch. 4.6 - Prob. 41ECh. 4.6 - Prob. 42ECh. 4.6 - Use logarithmic differentiation to differentiate...Ch. 4.6 - Use logarithmic differentiation to differentiate...Ch. 4.6 - Use logarithmic differentiation to differentiate...Ch. 4.6 - Use logarithmic differentiation to differentiate...Ch. 4.6 - Prob. 47ECh. 4.6 - Use logarithmic differentiation to differentiate...Ch. 4.6 - Use logarithmic differentiation to differentiate...Ch. 4.6 - Use logarithmic differentiation to differentiate...Ch. 4.6 - Prob. 51ECh. 4.6 - Prob. 52ECh. 4.6 - Prob. 53ECh. 4.6 - Prob. 54ECh. 4 - State as many laws of exponents as you can recall.Ch. 4 - Prob. 2CCECh. 4 - Prob. 3CCECh. 4 - Prob. 4CCECh. 4 - Prob. 5CCECh. 4 - Prob. 6CCECh. 4 - Prob. 7CCECh. 4 - Prob. 8CCECh. 4 - Prob. 9CCECh. 4 - Prob. 10CCECh. 4 - Prob. 11CCECh. 4 - Prob. 12CCECh. 4 - Prob. 13CCECh. 4 - Prob. 14CCECh. 4 - Calculate the following. 274/3Ch. 4 - Calculate the following. 41.5Ch. 4 - Prob. 3RECh. 4 - Prob. 4RECh. 4 - Calculate the following. (25/7)14/5Ch. 4 - Prob. 6RECh. 4 - Prob. 7RECh. 4 - Calculate the following. 40.240.3Ch. 4 - Simplify the following. (ex2)3Ch. 4 - Simplify the following. e5xe2xCh. 4 - Simplify the following. e3xexCh. 4 - Simplify the following. 2x3xCh. 4 - Simplify the following. (e8x+7e2x)e3xCh. 4 - Simplify the following. e5x/2e3xexCh. 4 - Solve the following equations for x. e3x=e12Ch. 4 - Solve the following equations for x. ex2x=e2Ch. 4 - Solve the following equations for x. (exe2)3=e9Ch. 4 - Solve the following equations for x. e5xe4=eCh. 4 - Differntiate the following functions. y=10e7xCh. 4 - Differntiate the following functions. y=exCh. 4 - Differentiate the following functions. y=xex2Ch. 4 - Differentiate the following functions. y=ex+1x1Ch. 4 - Differntiate the following functions. y=eexCh. 4 - Differntiate the following functions. y=(x+1)e2xCh. 4 - Differentiate the following functions....Ch. 4 - Differentiate the following functions. y=xeCh. 4 - The graph of the functions f(x)=ex24x2 is shown in...Ch. 4 - Show that the function in Fig. 1 has a relative...Ch. 4 - Solve the following equations for t....Ch. 4 - Solve the following equations for t. et8e0.02t=0Ch. 4 - Solve the equation 42x=ex. [Hint: Express 2x as an...Ch. 4 - Solve the equation 3x=2ex. [Hint: Express 3x as an...Ch. 4 - Find the points on the graph of y=ex where the...Ch. 4 - Find the points on the graph y=ex+e2x where the...Ch. 4 - Determine the intervals where the function...Ch. 4 - Determine the intervals where the function...Ch. 4 - Find the equation of the tangent line to the graph...Ch. 4 - Show that the tangent lines to the graph of...Ch. 4 - Simplify the following expressions. e(ln5)/2Ch. 4 - Simplify the following expressions. eln(x2)Ch. 4 - Simplify the following expressions. lnx2lnx3Ch. 4 - Simplify the following expressions. e2ln2Ch. 4 - Simplify the following expressions. e5ln1Ch. 4 - Simplify the following expressions. [elnx]2Ch. 4 - Solve the following equations for t. tlnt=eCh. 4 - Solve the following equations for t. ln(ln3t)=0Ch. 4 - Solve the following equations for t. 3e2t=15Ch. 4 - Solve the following equations for t. 3et/212=0Ch. 4 - Solve the following equations for t. 2lnt=5Ch. 4 - Solve the following equations for t. 2e0.3t=1Ch. 4 - Differentiate the following functions....Ch. 4 - Differentiate the following functions. y=xlnxCh. 4 - Differentiate the following functions. y=ln(5x7)Ch. 4 - Differentiate the following functions. y=ln(9x)Ch. 4 - Differentiate the following functions. y=(lnx)2Ch. 4 - Differentiate the following functions. y=(xlnx)3Ch. 4 - Differentiate the following functions....Ch. 4 - Differentiate the following functions....Ch. 4 - Differentiate the following functions. y=xlnxxCh. 4 - Differentiate the following functions. y=e2ln(x+1)Ch. 4 - Differentiate the following functions. y=ln(lnx)Ch. 4 - Differentiate the following functions. y=1lnxCh. 4 - Differentiate the following functions. y=exlnxCh. 4 - Differentiate the following functions. y=ln(x2+ex)Ch. 4 - Differentiate the following functions....Ch. 4 - Differentiate the following functions. y=ln|2x+1|Ch. 4 - Differentiate the following functions. y=ln(ex2x)Ch. 4 - Differentiate the following functions. y=lnx3+3x23Ch. 4 - Differentiate the following functions. y=ln(2x)Ch. 4 - Differentiate the following functions....Ch. 4 - Differentiate the following functions. y=ln|x1|Ch. 4 - Differentiate the following functions....Ch. 4 - Differentiate the following functions. y=ln(1ex)Ch. 4 - Differentiate the following functions....Ch. 4 - Use logarithmic differentiation to differentiate...Ch. 4 - Use logarithmic differentiation to differentiate...Ch. 4 - Use logarithmic differentiation to differentiate...Ch. 4 - Use logarithmic differentiation to differentiate...Ch. 4 - Use logarithmic differentiation to differentiate...Ch. 4 - Prob. 80RECh. 4 - Prob. 81RECh. 4 - Prob. 82RECh. 4 - Use logarithmic differentiation to differentiate...Ch. 4 - Prob. 84RECh. 4 - Prob. 85RECh. 4 - Prob. 86RECh. 4 - Prob. 87RECh. 4 - Health Expenditures The health expenditures (in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- 15. Please solve this and show each and every step please. PLEASE no chatgpt can I have a real person solve it please!! I am stuck. I am doing pratice problems and I do not even know where to start with this. The question is Please compute the indicated functional value.arrow_forwardUse a graph of f to estimate lim f(x) or to show that the limit does not exist. Evaluate f(x) near x = a to support your conjecture. Complete parts (a) and (b). x-a f(x)= 1 - cos (4x-4) 3(x-1)² ; a = 1 a. Use a graphing utility to graph f. Select the correct graph below.. A. W → ✓ Each graph is displayed in a [- 1,3] by [0,5] window. B. in ✓ ○ C. und ☑ Use the graphing utility to estimate lim f(x). Select the correct choice below and, if necessary, fill in the answer box to complete your choice. x-1 ○ A. The limit appears to be approximately ☐ . (Round to the nearest tenth as needed.) B. The limit does not exist. b. Evaluate f(x) for values of x near 1 to support your conjecture. X 0.9 0.99 0.999 1.001 1.01 1.1 f(x) ○ D. + ☑ (Round to six decimal places as needed.) Does the table from the previous step support your conjecture? A. No, it does not. The function f(x) approaches a different value in the table of values than in the graph, after the approached values are rounded to the…arrow_forwardx²-19x+90 Let f(x) = . Complete parts (a) through (c) below. x-a a. For what values of a, if any, does lim f(x) equal a finite number? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. x→a+ ○ A. a= (Type an integer or a simplified fraction. Use a comma to separate answers as needed.) B. There are no values of a for which the limit equals a finite number. b. For what values of a, if any, does lim f(x) = ∞o? Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. x→a+ A. (Type integers or simplified fractions) C. There are no values of a that satisfy lim f(x) = ∞. + x-a c. For what values of a, if any, does lim f(x) = -∞0? Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. x→a+ A. Either a (Type integers or simplified fractions) B.arrow_forwardSketch a possible graph of a function f, together with vertical asymptotes, that satisfies all of the following conditions. f(2)=0 f(4) is undefined lim f(x)=1 X-6 lim f(x) = -∞ x-0+ lim f(x) = ∞ lim f(x) = ∞ x-4 _8arrow_forwardDetermine the following limit. lim 35w² +8w+4 w→∞ √49w+w³ 3 Select the correct choice below, and, if necessary, fill in the answer box to complete your choice. ○ A. lim W→∞ 35w² +8w+4 49w+w3 (Simplify your answer.) B. The limit does not exist and is neither ∞ nor - ∞.arrow_forwardCalculate the limit lim X-a x-a 5 using the following factorization formula where n is a positive integer and x-➡a a is a real number. x-a = (x-a) (x1+x-2a+x lim x-a X - a x-a 5 = n- + xa an-2 + an−1)arrow_forwardThe function s(t) represents the position of an object at time t moving along a line. Suppose s(1) = 116 and s(5)=228. Find the average velocity of the object over the interval of time [1,5]. The average velocity over the interval [1,5] is Vav = (Simplify your answer.)arrow_forwardFor the position function s(t) = - 16t² + 105t, complete the following table with the appropriate average velocities. Then make a conjecture about the value of the instantaneous velocity at t = 1. Time Interval Average Velocity [1,2] Complete the following table. Time Interval Average Velocity [1, 1.5] [1, 1.1] [1, 1.01] [1, 1.001] [1,2] [1, 1.5] [1, 1.1] [1, 1.01] [1, 1.001] ப (Type exact answers. Type integers or decimals.) The value of the instantaneous velocity at t = 1 is (Round to the nearest integer as needed.)arrow_forwardFind the following limit or state that it does not exist. Assume b is a fixed real number. (x-b) 40 - 3x + 3b lim x-b x-b ... Select the correct choice below and, if necessary, fill in the answer box to complete your choice. (x-b) 40 -3x+3b A. lim x-b x-b B. The limit does not exist. (Type an exact answer.)arrow_forwardx4 -289 Consider the function f(x) = 2 X-17 Complete parts a and b below. a. Analyze lim f(x) and lim f(x), and then identify the horizontal asymptotes. x+x X--∞ lim 4 X-289 2 X∞ X-17 X - 289 lim = 2 ... X∞ X - 17 Identify the horizontal asymptotes. Select the correct choice and, if necessary, fill in the answer box(es) to complete your choice. A. The function has a horizontal asymptote at y = B. The function has two horizontal asymptotes. The top asymptote is y = and the bottom asymptote is y = ☐ . C. The function has no horizontal asymptotes. b. Find the vertical asymptotes. For each vertical asymptote x = a, evaluate lim f(x) and lim f(x). Select the correct choice and, if necessary, fill in the answer boxes to complete your choice. earrow_forwardExplain why lim x²-2x-35 X-7 X-7 lim (x+5), and then evaluate lim X-7 x² -2x-35 x-7 x-7 Choose the correct answer below. A. x²-2x-35 The limits lim X-7 X-7 and lim (x+5) equal the same number when evaluated using X-7 direct substitution. B. Since each limit approaches 7, it follows that the limits are equal. C. The numerator of the expression X-2x-35 X-7 simplifies to x + 5 for all x, so the limits are equal. D. Since x²-2x-35 X-7 = x + 5 whenever x 7, it follows that the two expressions evaluate to the same number as x approaches 7. Now evaluate the limit. x²-2x-35 lim X-7 X-7 = (Simplify your answer.)arrow_forwardA function f is even if f(x) = f(x) for all x in the domain of f. If f is even, with lim f(x) = 4 and x-6+ lim f(x)=-3, find the following limits. X-6 a. lim f(x) b. +9-←x lim f(x) X-6 a. lim f(x)= +9-←x (Simplify your answer.) b. lim f(x)= X→-6 (Simplify your answer.) ...arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtInverse Functions; Author: Professor Dave Explains;https://www.youtube.com/watch?v=9fJsrnE1go0;License: Standard YouTube License, CC-BY