Managerial Economics: Applications, Strategies and Tactics (MindTap Course List)
Managerial Economics: Applications, Strategies and Tactics (MindTap Course List)
14th Edition
ISBN: 9781305506381
Author: James R. McGuigan, R. Charles Moyer, Frederick H.deB. Harris
Publisher: Cengage Learning
Question
Book Icon
Chapter 4, Problem 9E

(a)

To determine

Estimated regression equation.

(a)

Expert Solution
Check Mark

Explanation of Solution

The formula for regression equation is:

  Y^=a+bX^Here,a is estimated intercept coefficientb is estimated slope coefficient

Run the ordinary least squares method for the given data in excel. The results drawn are as follows:

  Managerial Economics: Applications, Strategies and Tactics (MindTap Course List), Chapter 4, Problem 9E , additional homework tip  1

Use the summary output to find the estimated regression equation as follows:

  Y^ = 185.26 + 3.92X^1 + 3.59X^2 - 0.12X^3 - 2.83X^4Here,Y^= estimated selling price in $1,000X^1 = estimated size in 100 ft 2X^2 = estimated total number of roomsX^3 = estimated ageX^4 = estimated garage

(b)

To determine

Economic interpretation of each estimated regression coefficients.

(b)

Expert Solution
Check Mark

Explanation of Solution

Interpretation of estimated slope (b) coefficient:

For a given level of total no. of rooms, age and attached garage, an additional 100 ft2 will lead to rise in selling price by 3.92×$1000 = $3,920.

For a given level of size, age and attached garage, an additional room will lead to rise in selling price by 3.59×$1000 = $3,590.

For a given level of size, total no. of rooms and attached garage, an additional year of age will lead to fall in selling price by 0.12×$1000 = $120.

For a given level of size, total no. of rooms and age, an additional garage will lead to fall in selling price by 2.83×$1000 = $2,830.

(c)

To determine

Statistical significance of the independent variables at 0.05 level.

(c)

Expert Solution
Check Mark

Explanation of Solution

Conduct the t-test to know the statistical significance of the independent variables X1, X2, X3 and X4. The test statistic can be calculated using following formula:

   T =  b^ 1 s b 1 Here, b^ 1  is coefficient of estimated independent variable s b 1  is standard error of coefficient of estimated independent variable

The t-statistic follows t-distribution with n-1 degrees of freedom.

For variable X1, t-test is conducted as follows:

According to the summary output, the t-statistic for X1 variable is equal to 5.19.

At 5% significance level and 15-1= 14 degrees of freedom, the critical value is equal to 2.145.

  Managerial Economics: Applications, Strategies and Tactics (MindTap Course List), Chapter 4, Problem 9E , additional homework tip  2

In figure (1), since the calculated t-statistic lies in the critical region. Therefore, we reject the null hypothesis. This means that the variable X1is statistically significant.

For variable X2, t-test is conducted as follows:

According to the summary output, the t-statistic for X2 variable is equal to 0.80.

At 5% significance level and 15-1= 14 degrees of freedom, the critical value is equal to 2.145.

  Managerial Economics: Applications, Strategies and Tactics (MindTap Course List), Chapter 4, Problem 9E , additional homework tip  3

In figure (2), since the calculated t-statistic lies in the acceptance region. Therefore, we accept the null hypothesis. This means that the variable X2is not statistically significant.

For variable X3, t-test is conducted as follows:

According to the summary output, the t-statistic for X3 variable is equal to -0.18.

At 5% significance level and 15-1= 14 degrees of freedom, the critical value is equal to 2.145.

  Managerial Economics: Applications, Strategies and Tactics (MindTap Course List), Chapter 4, Problem 9E , additional homework tip  4

In figure (3), since the calculated t-statistic lies in the acceptance region. Therefore, we accept the null hypothesis. This means that the variable X3is not statistically significant.

For variable X4, t-test is conducted as follows:

According to the summary output, the t-statistic for X4 variable is equal to -0.29.

At 5% significance level and 15-1= 14 degrees of freedom, the critical value is equal to 2.145.

  Managerial Economics: Applications, Strategies and Tactics (MindTap Course List), Chapter 4, Problem 9E , additional homework tip  5

In figure (4), since the calculated t-statistic lies in the acceptance region. Therefore, we accept the null hypothesis. This means that the variable X4is not statistically significant.

(d)

To determine

Proportion of total variation in selling price explained by regression model.

(d)

Expert Solution
Check Mark

Explanation of Solution

The coefficient of determination measures the proportion of variance predicted by the independent variable in the dependent variable. It is denoted as R2.

According to the summary output, the value of R2 is equal to 0.89. This means that the regression equation predicts 89% of the variance in selling price.

(e)

To determine

Overall explanatory power of model by performing F-test at 5 percent level of significance.

(e)

Expert Solution
Check Mark

Explanation of Solution

The value of F-statistic is given as 20.85. And the critical value at 0.05 significance level is equal to 0.00.

Since, F-statistic is greater than the critical value. Thus, the overall model is statistically significant.

(f)

To determine

95 percent prediction interval for selling price of a 15-year-old house having 1,800 sq. ft., 7 rooms, and an attached garage.

(f)

Expert Solution
Check Mark

Explanation of Solution

The confidence interval of a multiple linear regression model can be calculated using following formula:

  y^ ± (t × s.e)

Here,

y is estimated selling price based on the given values of independent variables

t is critical t value or t-statistic

s.e is multiple standard error of the estimate

The estimated selling price based on the given values of independent variables can be calculated using the estimated regression equation as follows:

  Y^ = 185.26 + 3.92(1800) + 3.59(7) - 0.12(15) - 2.83(1)= 185.26 + 7056 + 25.13 - 1.8 + 2.83= 7267.42

According to the regression statistics in the summary output t-statistic and value of multiple standard error of the estimate is equal to 2.14 and 11.13.

Plug the values in the above confidence interval formula as follows:

  7267.42 ± (2.14×11.3)

Thus, an approximate 95% prediction interval for the selling price of a house having an area of a 15-year-old having 1,800 sq. ft., 7 rooms, and an attached garage range from 7291.24 to 7243.60.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Should Maureen question the family about the history of the home? Can Maureen access public records for proof of repairs?
3. Distinguish between a direct democracy and a representative democracy. Use appropriate examples to support your answers. [4] 4. Explain the distinction between outputs and outcomes in social service delivery [2] 5. A R1000 tax payable by all adults could be viewed as both a proportional tax and a regressive tax. Do you agree? Explain. [4] 6. Briefly explain the displacement effect in Peacock and Wiseman's model of government expenditure growth and provide a relevant example of it in the South African context. [5] 7. Explain how unbalanced productivity growth may affect government expenditure and briefly comment on its relevance to South Africa. [5] 8. South Africa has recently proposed an increase in its value-added tax rate to 15%, sparking much controversy. Why is it argued that value-added tax is inequitable and what can be done to correct the inequity? [5] 9. Briefly explain the difference between access to education and the quality of education, and why we should care about the…
20. Factors 01 pro B. the technological innovations available to companies. A. the laws that regulate manufacturers. C. the resources used to create output D. the waste left over after goods are produced. 21. Table 1.1 shows the tradeoff between different combinations of missile production and home construction, ceteris paribus. Complete the table by calculating the required opportunity costs for both missiles and houses. Then answer the indicated question(s). Combination Number of houses Opportunity cost of houses in Number of missiles terms of missiles J 0 4 K 10,000 3 L 17,000 2 1 M 21,000 0 N 23,000 Opportunity cost of missiles in terms of houses Tutorials-Principles of Economics m health care
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Managerial Economics: Applications, Strategies an...
Economics
ISBN:9781305506381
Author:James R. McGuigan, R. Charles Moyer, Frederick H.deB. Harris
Publisher:Cengage Learning
Text book image
MACROECONOMICS FOR TODAY
Economics
ISBN:9781337613057
Author:Tucker
Publisher:CENGAGE L
Text book image
Micro Economics For Today
Economics
ISBN:9781337613064
Author:Tucker, Irvin B.
Publisher:Cengage,
Text book image
Economics For Today
Economics
ISBN:9781337613040
Author:Tucker
Publisher:Cengage Learning
Text book image
Survey Of Economics
Economics
ISBN:9781337111522
Author:Tucker, Irvin B.
Publisher:Cengage,
Text book image
Microeconomic Theory
Economics
ISBN:9781337517942
Author:NICHOLSON
Publisher:Cengage