Ski jumping in Vancouver The 2010 Olympic ski jumping competition was held at Whistler Mountain near Vancouver During a jump, a skier starts near the top of the in-run, the part down which the skier glides at increasing speed before the jump. The Whistler in-run is 116 m long and for the first part is tilted down at about 35 ° below the horizontal There is then a curve that transitions into a takeoff ramp, which is tilted 11 ° below the horizontal The skier flies off this ramp at high speed body tilted forward and skis separated ( Figure 4.15 ). This position exposes a large surface area to the air, which creates lift, extends the time of the jump, and allows the jumper to travel farther In addition, the skier pushes off the exit ramp of the in-run to get a vertical component of velocity when leaving the ramp. The skier lands 125 m or more from the end of the in-run. The landing surface has a complex shape and is tilted down at about 35 ° below the horizontal The skier moves surprisingly close (2 to 6 m) above the snowy surface for most of the jump. The coefficient of kinetic friction between the skis and the snow on the in-run is about 0.05 ± 0.02 , and skiers’ masses are normally small—about 60 kg. We can make some rough estimates about an idealized ski jump with an average in-run inclination of ( 35 ° + 11 ° ) / 2 = 23 ° . Which answer below is closest to the magnitude of the normal force that the idealized in-run exerts on the 60-kg skier? a. 590 N b. 540 N c. 250 N d. 230 N
Ski jumping in Vancouver The 2010 Olympic ski jumping competition was held at Whistler Mountain near Vancouver During a jump, a skier starts near the top of the in-run, the part down which the skier glides at increasing speed before the jump. The Whistler in-run is 116 m long and for the first part is tilted down at about 35 ° below the horizontal There is then a curve that transitions into a takeoff ramp, which is tilted 11 ° below the horizontal The skier flies off this ramp at high speed body tilted forward and skis separated ( Figure 4.15 ). This position exposes a large surface area to the air, which creates lift, extends the time of the jump, and allows the jumper to travel farther In addition, the skier pushes off the exit ramp of the in-run to get a vertical component of velocity when leaving the ramp. The skier lands 125 m or more from the end of the in-run. The landing surface has a complex shape and is tilted down at about 35 ° below the horizontal The skier moves surprisingly close (2 to 6 m) above the snowy surface for most of the jump. The coefficient of kinetic friction between the skis and the snow on the in-run is about 0.05 ± 0.02 , and skiers’ masses are normally small—about 60 kg. We can make some rough estimates about an idealized ski jump with an average in-run inclination of ( 35 ° + 11 ° ) / 2 = 23 ° . Which answer below is closest to the magnitude of the normal force that the idealized in-run exerts on the 60-kg skier? a. 590 N b. 540 N c. 250 N d. 230 N
Ski jumping in Vancouver The 2010 Olympic ski jumping competition was held at Whistler Mountain near Vancouver During a jump, a skier starts near the top of the in-run, the part down which the skier glides at increasing speed before the jump. The Whistler in-run is 116 m long and for the first part is tilted down at about
35
°
below the horizontal There is then a curve that transitions into a takeoff ramp, which is tilted
11
°
below the horizontal The skier flies off this ramp at high speed body tilted forward and skis separated (Figure 4.15). This position exposes a large surface area to the air, which creates lift, extends the time of the jump, and allows the jumper to travel farther In addition, the skier pushes off the exit ramp of the in-run to get a vertical component of velocity when leaving the ramp. The skier lands 125 m or more from the end of the in-run. The landing surface has a complex shape and is tilted down at about
35
°
below the horizontal The skier moves surprisingly close (2 to 6 m) above the snowy surface for most of the jump. The coefficient of kinetic friction between the skis and the snow on the in-run is about
0.05
±
0.02
, and skiers’ masses are normally small—about 60 kg. We can make some rough estimates about an idealized ski jump with an average in-run inclination of
(
35
°
+
11
°
)
/
2
=
23
°
.
Which answer below is closest to the magnitude of the normal force that the idealized in-run exerts on the 60-kg skier?
You are working with a team that is designing a new roller coaster-type amusement park ride for a major theme park. You are present for the testing of the ride, in which an empty 150 kg car is sent along the entire ride. Near the end of the ride, the car is at near rest at the top of a 100 m
tall track. It then enters a final section, rolling down an undulating hill to ground level. The total length of track for this final section from the top to the ground is 250 m. For the first 230 m, a constant friction force of 370 N acts from computer-controlled brakes. For the last 20 m, which is
horizontal at ground level, the computer increases the friction force to a value required for the speed to be reduced to zero just as the car arrives at the point on the track at which the passengers exit.
(a) Determine the required constant friction force (in N) for the last 20 m for the empty test car.
Write AK + AU + AE int
= W+Q + TMW
+
TMT + TET + TER for the car-track-Earth system and solve for…
=
12 kg, and m3
Three objects with masses m₁ = 3.8 kg, m₂
find the speed of m3 after it moves down 4.0 m.
m/s
19 kg, respectively, are attached by strings over frictionless pulleys as indicated in the figure below. The horizontal surface exerts a force of friction of 30 N on m2. If the system is released from rest, use energy concepts to
m
m2
m3
i
Three objects with masses m₁ = 3.8 kg, m₂ = 12 kg, and m 19 kg, respectively, are attached by strings over frictionless pulleys as indicated in the figure below. The horizontal surface exerts a force of friction of 30 N on m2. If the system is released from rest, use energy concepts to
find the speed of m¸ after it moves down 4.0 m.
m/s
m
m2
mg
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.