College Physics
College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
bartleby

Videos

Textbook Question
100%
Book Icon
Chapter 4, Problem 1RQ

Review Question 4.1 When does a vector have a positive scalar component? When does a vector have a negative scalar component?

Expert Solution & Answer
Check Mark
To determine

The condition under which a vector has a positive scalar component and a negative scalar component.

Answer to Problem 1RQ

Solution:

When the vector component is in the positive direction of the axis, the scalar component is positive.

When the vector component is in the negative direction of the axis, the scalar component is negative.

Explanation of Solution

Introduction:

The scalar component of vector is determined by the x-axis and the y-axis, which are perpendicular to each other. There is no need to use the vector component of F. It can be replaced with perpendicular forces Fx and Fy.

Explanation:

Consider the first case, when a vector is in the positive x-direction,

The following steps are used to draw the diagram,

(1) Draw an arrow that represents the vector F.

(2) Now, draw the x-axis and the y-axis, which are perpendicular to each other.

(3) Resolve the vector into components.

College Physics, Chapter 4, Problem 1RQ , additional homework tip  1

Here, F is the magnitude of the force vector, θ is the angle with respect to the positive x-axis, Fx is the force component in the positive x-direction, and Fy is the force component in the positive y-direction.

Resolve the magnitude of force F as,

Fx=Fcosθ

And,

Fy=Fsinθ

Therefore, when the vector component is in the positive direction of the axis, the scalar component is positive.

Consider the second case, when a vector is in the negative x-direction,

College Physics, Chapter 4, Problem 1RQ , additional homework tip  2

Here, F is the magnitude of the force vector, θ is the angle with respect to the negative x-axis, Fx is the force component in the negative x-direction, and Fy is the force component in the positive y-direction.

Find the values of the scalar component as,

Fx=Fcosθ

And,

Fy=Fsinθ

Suppose Fy is the force component in the negative y-direction, then,

Fy=Fsinθ

Here, the negative sign shows the direction of the vector.

Therefore, when the vector component is in the negative direction of the axis, the scalar component is negative.

Conclusion:

Thus, if the vector component is in the positive direction of the axis, then the scalar component is positive and, if the vector component is in the negative direction of the axis, the scalar component is negative.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The determined Wile E. Coyote is out once more to try to capture the elusive Road Runner of Loony Tunes fame. The coyote is strapped to a rocket, which provide a constant horizontal acceleration of 15.0 m/s2. The coyote starts off at rest 79.2 m from the edge of a cliff at the instant the roadrunner zips by in the direction of the cliff.  If the roadrunner moves with constant speed, find the minimum velocity the roadrunner must have to reach the cliff before the coyote. (proper sig fig in answer)
PROBLEM 4 What is the resultant of the force system acting on the connection shown? 25 F₁ = 80 lbs IK 65° F2 = 60 lbs
Three point-like charges in the attached image are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 38.0 cm, and the point (C) is located half way between q1 and q3 along the side. Find the magnitude of the electric field at point (C). Let q1 = −2.80 µC, q2 = −3.40 µC, and q3 = −4.50 µC. Thank you.

Chapter 4 Solutions

College Physics

Ch. 4 - You shoot an arrow with a bow. The following is...Ch. 4 - In what reference frame does a projectile launched...Ch. 4 - In Table 4.6 we found that the two balls touched...Ch. 4 - 8. While running at constant velocity, how should...Ch. 4 - 9. You hold a block on a horizontal, frictionless...Ch. 4 - 10. In the process described in the previous...Ch. 4 - Suppose that two blocks are positioned on an...Ch. 4 - 12. A box containing some stones is resting on a...Ch. 4 - For the following two questions, the answer...Ch. 4 - 14. A block is resting on a rough inclined...Ch. 4 - 15. A box with a heavy television set in it...Ch. 4 - 16. How can an Atwood machine be used to determine...Ch. 4 - 17. Your friend is on Rollerblades holding a...Ch. 4 - Explain why a car starts skidding when a driver...Ch. 4 - 19. Explain why old tires need to be replaced. Ch. 4 - 20. Explain how friction helps you to walk. Ch. 4 - 21. Explain why you might fall forward when you...Ch. 4 - Explain why you might fall backward when you slip.Ch. 4 - Explain why the tires of your car can spin out...Ch. 4 - You throw two identical balls simultaneously at...Ch. 4 - 25. Your friend says that the vertical force...Ch. 4 - Your friend says that a projectile launched at an...Ch. 4 - An object of mass m1 placed on an inclined plane...Ch. 4 - 28 An object of mass m1 placed on an inclined...Ch. 4 - 29. A horse is pulling a sled. If the force...Ch. 4 - 30. If you kick a block so that it starts moving...Ch. 4 - Determine the x- and y-components of each force...Ch. 4 - 2. Determine the x- and y-components of each force...Ch. 4 - * Determine the x- and y-components of each...Ch. 4 - 4 * The x- and y-components of several unknown...Ch. 4 - * The x- and y-scalar components of several...Ch. 4 - 6. * Three ropes pull on a knot shown in Figure...Ch. 4 - * Figure P4.7 shows an unlabeled force diagram for...Ch. 4 - For each of the following situations, draw the...Ch. 4 - * Write Newtons second law in component form for...Ch. 4 - For the situations described here, construct a...Ch. 4 - * Write Newtons second law in component form for...Ch. 4 - Apply Newtons second law in component form for the...Ch. 4 - Apply Newtons second law in component form for the...Ch. 4 - 14. * Equation Jeopardy 1 The three sets of...Ch. 4 - * You exert a force of 100 N on a rope that pulls...Ch. 4 - 16. * You exert a force of a known magnitude F on...Ch. 4 - * Olympic 100-m dash start At the start of his...Ch. 4 - 18. * Your own accelerometer A train has an...Ch. 4 - * EST Finn and Hazel are using a battery-powered...Ch. 4 - A 91.0-kg refrigerator sits on the floor. The...Ch. 4 - A 60-kg student sitting on a hardwood floor does...Ch. 4 - Car stopping distance and friction A car traveling...Ch. 4 - 23. * A 50-kg box rests on the floor. The...Ch. 4 - 24. * Marsha is pushing down and to the right on a...Ch. 4 - * You want to determine the coefficient of kinetic...Ch. 4 - * A wagon is accelerating to the right. A book is...Ch. 4 - s. Determine an expression for the minimum...Ch. 4 - * A car has a mass of 1520 kg. While traveling at...Ch. 4 - m/s2 when pulled by a rope exerting a 120-N force...Ch. 4 - 30. ** A crate of mass m sitting on a horizontal...Ch. 4 - * EST You absentmindedly leave your book bag on...Ch. 4 - 32. * Block 1 is on a horizontal surface with a...Ch. 4 - 33. * You want to use a rope to pull a 10-kg box...Ch. 4 - 34. * A car with its wheels locked rests on a...Ch. 4 - 35. Olympic skier Olympic skier Tina Maze skis...Ch. 4 - * Another Olympic skier Bode Miller. 80-kg...Ch. 4 - * A book slides off a desk that is tilted 15...Ch. 4 - * Helge, Steve, and Heidi are sitting on a sled on...Ch. 4 - 40. * When traveling on an airplane you get meals...Ch. 4 - 41. Skier A 52-kg skier starts at rest and slides...Ch. 4 - 42. * Ski rope tow You agree to build a backyard...Ch. 4 - 43. * Soapbox racecar A soapbox derby racecar...Ch. 4 - 44. * A person is pushing two carts that are...Ch. 4 - 45. * BIO Whiplash Experience A car sitting at...Ch. 4 - Iditarod race practice The dogs of four-time...Ch. 4 - angle above the horizontal. The other end of the...Ch. 4 - * Rope 1 pulls horizontally, exerting a force of...Ch. 4 - * Three sleds of masses m1,m2,m3 are on a smooth...Ch. 4 - 50. ** Repeat Problem 4.49 , only this time with...Ch. 4 - 51. * A skier is moving down a snowy hill with an...Ch. 4 - ** A person holds a 200-g block that is connected...Ch. 4 - 53. ** Two blocks of masses are connected to each...Ch. 4 - 54. ** The 20-kg block shown in Figure P4.54 ...Ch. 4 - * A squirrel jumps of a roof in the horizontal...Ch. 4 - * A frog jumps at an angle 30 above the...Ch. 4 - 57. A bowling ball rolls off a table. Draw a force...Ch. 4 - 58 * A tennis ball is served from the back line of...Ch. 4 - 59. * Equation Jeopardy 3 The equations below...Ch. 4 - 60 * EST An airplane is delivering food to a small...Ch. 4 - A ball moves in an arc through the air (see Figure...Ch. 4 - A marble is thrown as a projectile at an angle...Ch. 4 - 63 * Marbles are exiting a container through a...Ch. 4 - * Robbie Knievel ride On May 20, 1999, Robbie...Ch. 4 - 65. * Daring Darless wishes to cross the Grand...Ch. 4 - * A football punter wants to kick the ball so that...Ch. 4 - 67. * If you shoot a cannonball from the same...Ch. 4 - 68. When you actually perform the experiment...Ch. 4 - 69. * You can shoot an arrow straight up so that...Ch. 4 - 70. * Robin Hood wishes to split an arrow already...Ch. 4 - 71. * Three force diagrams for a car on a road are...Ch. 4 - * A minivan of mass 1560 kg starts at rest and...Ch. 4 - 74. * Emily pulls a 5-kg block across a rough...Ch. 4 - 75. * EST You abruptly push a 1.7-kg book along a...Ch. 4 - 76 ** EST In the situation of Problem 4.75,...Ch. 4 - 78. * Two blocks of masses and hang at the ends...Ch. 4 - 79. * A 3.5-kg object placed on an Inclined plane...Ch. 4 - above the horizontal) is connected by a string...Ch. 4 - above the horizontal) is connected by a string...Ch. 4 - 82 ** You are driving at a reasonable constant...Ch. 4 - 84. * In the situation of Problem 2.71 (Chapter 2...Ch. 4 - 87. * Your friend has a pie on the roof of his...Ch. 4 - * A ledge on a building is 20 m above the ground....Ch. 4 - 89. * You are hired to devise a method to...Ch. 4 - The mass of a spacecraft is about 480 kg. An...Ch. 4 - incline When she reaches the level floor at the...Ch. 4 - * Tell all A sled starts at the top of the hill...Ch. 4 - Professor tests airplane takeoff speed D. A....Ch. 4 - Professor tests airplane takeoff speed D A Wardle,...Ch. 4 - Professor tests airplane takeoff speed D A Wardle,...Ch. 4 - Professor tests airplane takeoff speed D. A....Ch. 4 - Choose the best velocity-versus-time graph below...Ch. 4 - Ski jumping in Vancouver The 2010 Olympic ski...Ch. 4 - Ski jumping in Vancouver The 2010 Olympic ski...Ch. 4 - Ski jumping in Vancouver The 2010 Olympic ski...Ch. 4 - Assume that the skier left the ramp moving...Ch. 4 - Ski jumping in Vancouver The 2010 Olympic ski...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Vectors and 2D Motion: Crash Course Physics #4; Author: CrashCourse;https://www.youtube.com/watch?v=w3BhzYI6zXU;License: Standard YouTube License, CC-BY