Interpretation:
The number of electrons present in Se2 - ion should be determined.
Concept Introduction:
All neutral atoms have same number of electrons as that of protons known as the
The loss or gain of electron results in the formation of ions. The loss of electron forms cation results in positive charge on parent atom whereas the gain of electron forms anion results in negative charge on parent atom.
Interpretation:
The number of electrons present in Br- ion should be determined.
Concept Introduction:
All neutral atoms have same number of electrons as that of protons known as the atomic number of the element. Every element has a unique atomic number through which it is identified. The number of protons remain intact.
The loss or gain of electron results in the formation of ions. The loss of electron forms cation results in positive charge on parent atom whereas the gain of electron forms anion results in negative charge on parent atom.
Interpretation:
The number of electrons present in Cr3 + ion should be determined.
Concept Introduction:
All neutral atoms have same number of electrons as that of protons known as the atomic number of the element. Every element has a unique atomic number through which it is identified. The number of protons remain intact.
The loss or gain of electron results in the formation of ions. The loss of electron forms cation results in positive charge on parent atom whereas the gain of electron forms anion results in negative charge on parent atom.
Interpretation:
The number of electrons present in Rb+ ion should be determined.
Concept Introduction:
All neutral atoms have same number of electrons as that of protons known as the atomic number of the element. Every element has a unique atomic number through which it is identified. The number of protons remain intact.
The loss or gain of electron results in the formation of ions. The loss of electron forms cation results in positive charge on parent atom whereas the gain of electron forms anion results in negative charge on parent atom.
Interpretation:
The number of electrons present in Bi3 + ion should be determined.
Concept Introduction:
All neutral atoms have same number of electrons as that of protons known as the atomic number of the element. Every element has a unique atomic number through which it is identified. The number of protons remain intact.
The loss or gain of electron results in the formation of ions. The loss of electron forms cation results in positive charge on parent atom whereas the gain of electron forms anion results in negative charge on parent atom.
Interpretation:
The number of electrons present in Cu2 + ion should be determined.
Concept Introduction:
All neutral atoms have same number of electrons as that of protons known as the atomic number of the element. Every element has a unique atomic number through which it is identified. The number of protons remain intact.
The loss or gain of electron results in the formation of ions. The loss of electron forms cation results in positive charge on parent atom whereas the gain of electron forms anion results in negative charge on parent atom.

Want to see the full answer?
Check out a sample textbook solution
Chapter 4 Solutions
Introductory Chemistry: Foundation - Text (Looseleaf)
- please add appropriate arrows and tell me in detail where to add which or draw itarrow_forwardPart 1. Draw monomer units of the following products and draw their reaction mechanism (with arrow pushing) Temporary cross-linked polymer Using: 4% polyvinyl alcohol+ methyl red + 4% sodium boratearrow_forwardcan you please answer both these questions and draw the neccesaryarrow_forward
- can you please give the answer for both these pictures. thankyouarrow_forwardPart 1. Draw monomer units of the following products and draw their reaction mechanism (with arrow pushing) | Bakelite like polymer Using: Resorcinol + NaOH + Formalinarrow_forwardQuestion 19 0/2 pts 3 Details You have a mixture of sodium chloride (NaCl) and potassium chloride (KCl) dissolved in water and want to separate out the Cl- ions by precipitating them out using silver ions (Ag+). The chemical equation for the net ionic reaction of NaCl and KCl with silver nitrate, AgNO3, is shown below. Ag+(aq) + Cl(aq) → AgCl(s) The total mass of the NaCl/KCl mixture is 1.299 g. Adding 50.42 mL of 0.381 M solution precipitates out all of the Cl-. What are the masses of NaCl and KCl in the mixture? Atomic masses: g: Mass of NaCl g: Mass of KCL Ag = 107.868 g mol- 1 Cl = 35.453 g mol- 1 K = 39.098 g mol- N = 14.007 g mol−1 Na = 22.99 g mol−1 0 = 15.999 g mol 1 Question Help: ✓ Message instructor Submit Questionarrow_forward
- Part 1. Draw monomer units of the following products and draw their reaction mechanism (with arrow pushing) Polyester fiber Using a) pthalic anhydride + anhydrous sodium acetate + ethylene glycol B)pthalic anhydride + anhydrous sodium acetate + glycerolarrow_forwardIdentify the missing starting materials/ reagents/ products in the following reactions. Show the stereochemistry clearly in the structures, if any. If there is a major product, draw the structures of the major product with stereochemistry clearly indicated where applicable. Show only the diastereomers (you do not have to draw the pairs of enantiomers). If you believe that multiple products are formed in approximately equal amounts (hence neither is the major product), draw the structures of the products, and show the detailed mechanism of these reactions to justify the formation of the multiple products. If you believe no product is formed, explain why briefly. (6 mark for each, except f and g, which are 10 mark each)arrow_forward3. What starting material would you use to synthesize 3-hydroxypentanoic acid using a NaBH4 reduction?arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning





