a.
Arrange the data and obtain Xmin and Xmax.
a.
Answer to Problem 95CE
The value of Xmin is 0.9.
The value of Xmax is 11.9.
Explanation of Solution
Calculation:
The data state to choose a dataset to prepare a brief descriptive report.
Here, the data chosen is Data set A.
The Data set A represents the percentage of sales in selected industries.
The data set A of sales percent can be sorted either ascending or descending.
Here, the data is sorted in the ascending order.
Sorting:
Software procedure:
Step-by-step procedure to sort the data using the MINITAB software:
- • Choose Data > Sort.
- • In columns to sort by, enter Percent.
- • Under Columns to sort, Choose specified columns.
- • In columns, enter the percent and choose increasing option.
- • In storage location for current columns, choose “specified columns of the current worksheet”.
- • In columns, enter “sorted percent”.
- • Click ok.
Thus, the sorted data has been stored in the column of sorted percent.
Minimum and Maximum:
Step-by-step procedure to find the minimum and maximum using the MINITAB software:
- • Choose Calc>calculator.
- • In store result in variable box, enter Minimum.
- • Under Expression, enter “MIN(Percent)”.
- • Click ok.
- • Choose Calc>calculator.
- • In store result in variable box, enter Maximum.
- • Under Expression, enter “MAX(Percent)”.
- • Click ok.
Data display:
- • Choose data> display data.
- • Select the columns to display as Minimum, Maximum.
- • Click ok.
Output using the MINITAB software is given below:
Thus, the value of Xmin is 0.9 and the value of Xmax is 11.9 respectively.
b.
Construct a histogram.
b.
Answer to Problem 95CE
Histogram:
Output obtained from MINITAB software is:
Explanation of Solution
Calculation:
Software procedure:
- Step by step procedure to draw the Histogram using MINITAB software.
- • Choose Graph > Histogram.
- • Choose Simple, and then click OK.
- • In Graph variables, enter the Percent.
- • Click OK.
Thus, the histogram has been obtained.
By observing the graph, it is clear that the curve is right skewed. Hence, it is appropriate to conclude that the data is approximately right skewed. Thus, the data set A for percent of sales is approximately right skewed.
c.
Find the
c.
Answer to Problem 95CE
The mean score is 3.55.
The median score is 3.
Explanation of Solution
Calculation:
Mean and median:
Software procedure:
Step-by-step procedure to find the mean, the median using the MINITAB software:
- • Choose Stat > Basic Statistics > Display
Descriptive Statistics . - • In Variables enter the columns Percent.
- • Choose option statistics, and select Mean, Median.
- • Click OK.
Output using the MINITAB software is given below:
- Thus, the mean and the median for the data set A are 3.55 and 3 respectively.
Shape of the distribution:
- • For symmetric data, the mean, the median and the
mode are equal. - • For positively skewed data, the mean exceeds the median.
- • For negatively skewed data, the mean is lower than the median.
From the value of mean, median, it is observed that the value of mean is greater than that of the median.
Thus, the data is said to be right skewed or positively skewed.
d.
Find the standard deviation for data set A.
d.
Answer to Problem 95CE
The standard deviation for data set A is 2.749.
Explanation of Solution
Calculation:
Standard deviation:
Software procedure:
Step-by-step procedure to find the mean and standard deviation using the MINITAB software:
- • Choose Stat > Basic Statistics > Display Descriptive Statistics.
- • In Variables enter the columns Percent.
- • Choose option statistics, and select Standard deviation.
- • Click OK.
Output using the MINITAB software is given below:
- Thus, the standard deviation has been obtained.
f.
Standardize the data and identify the outliers and an unusual observations.
f.
Answer to Problem 95CE
The standardized values of dataset A are given below:
-0.9640 | -0.6366 | 0.3456 | 0.3820 | -0.6730 | 0.0909 |
0.7093 | -0.0182 | -0.0182 | -0.9276 | -0.1637 | -0.2001 |
1.4005 | -0.9640 | -0.8912 | -0.0182 | 3.0375 | -0.6002 |
-0.8185 | 1.0367 | -0.2001 | -0.4547 | 0.2728 | -0.6366 |
-0.8912 | -0.5638 | -0.5638 | 0.4911 | -0.3820 | 2.8192 |
There are two outliers and two unusual values in the dataset.
Explanation of Solution
Calculation:
Standardized values:
Software procedure:
Step-by-step software procedure to obtain standardized values using EXCEL software is as follows:
- • Open an EXCEL file.
- • Enter the data in the column A in cells A1 to A32.
- • In cell B1, enter the formula “=STANDARDIZE(A1, 3.55, 2.749)”.
- • Select “ENTER” option.
- • Select and copy the cell B1 and drag till the 30nd cell.
- Output using EXCEL software is given below:
Thus, the standardized values have been obtained using EXCEL.
The outliers in the data set A can be identified using
Empirical Rule:
The Empirical Rule for a Normal model states that:
- • Within 1 standard deviation of mean, 68.26% of all observations will lie.
- • Within 2 standard deviations of mean, 95.44% of all observations will lie.
- • Within 3 standard deviations of mean, 99.73% of all observations will lie.
Empirical rule using MEGASTAT:
Software procedure:
Step-by-step software procedure to obtain Empirical rule using Mega Stat software is as follows:
- • Open an EXCEL file.
- • Enter the data in the column A in cells A1 to A30.
- • From the Add-Ins, Select Mega Stat >Descriptive statistics.
- • A dialogue box appears.
- • In Input
range box, select the input range from Sheet1!$A$1:$A$30. - • From the list box, select Empirical rule.
- • Click “OK”.
Output obtained using MEGA STAT is as follows:
The upper and lower bounds for the intervals indicated by the Empirical rule have been obtained.
Based on the z-scores, the observation has one outlier, that is, the observations with values 11.9 do not lie within the 3-standard deviations limits (–4.697 to 11.797). there is no unusual observation in the data set A.
f.
Find the
f.
Answer to Problem 95CE
The Q1 (25th percentile) is 1.775, Q2 (50th percentile) is 3 and Q3 (75th percentile) is 4.525.
Explanation of Solution
Calculation:
Standard deviation:
Software procedure:
Step-by-step procedure to find the Quartiles using the MINITAB software:
- • Choose Stat > Basic Statistics > Display Descriptive Statistics.
- • In Variables enter the columns Percent.
- • Choose option statistics, and select First Quartile, Median and Third Quartile.
- • Choose option Graphs, and select boxplot of data.
- • Click OK.
Output using the MINITAB software is given below:
- Thus, the Quartiles and boxplot have been obtained.
Observation:
From the boxplot, it is observed that the data set has two outliers within it. The boxplot disclosed that the median is closer to the first quartile, Q1 than it is to the third quartile, Q3, suggesting that the data is right skewed. The whiskers on the two sides are close in length, although it appears that the left whisker is slightly longer.
Want to see more full solutions like this?
Chapter 4 Solutions
Loose-leaf For Applied Statistics In Business And Economics
- A recent survey of 400 americans asked whether or not parents do too much for their young adult children. The results of the survey are shown in the data file. a) Construct the frequency and relative frequency distributions. How many respondents felt that parents do too much for their adult children? What proportion of respondents felt that parents do too little for their adult children? b) Construct a pie chart. Summarize the findingsarrow_forwardThe average number of minutes Americans commute to work is 27.7 minutes (Sterling's Best Places, April 13, 2012). The average commute time in minutes for 48 cities are as follows: Click on the datafile logo to reference the data. DATA file Albuquerque 23.3 Jacksonville 26.2 Phoenix 28.3 Atlanta 28.3 Kansas City 23.4 Pittsburgh 25.0 Austin 24.6 Las Vegas 28.4 Portland 26.4 Baltimore 32.1 Little Rock 20.1 Providence 23.6 Boston 31.7 Los Angeles 32.2 Richmond 23.4 Charlotte 25.8 Louisville 21.4 Sacramento 25.8 Chicago 38.1 Memphis 23.8 Salt Lake City 20.2 Cincinnati 24.9 Miami 30.7 San Antonio 26.1 Cleveland 26.8 Milwaukee 24.8 San Diego 24.8 Columbus 23.4 Minneapolis 23.6 San Francisco 32.6 Dallas 28.5 Nashville 25.3 San Jose 28.5 Denver 28.1 New Orleans 31.7 Seattle 27.3 Detroit 29.3 New York 43.8 St. Louis 26.8 El Paso 24.4 Oklahoma City 22.0 Tucson 24.0 Fresno 23.0 Orlando 27.1 Tulsa 20.1 Indianapolis 24.8 Philadelphia 34.2 Washington, D.C. 32.8 a. What is the mean commute time for…arrow_forwardMorningstar tracks the total return for a large number of mutual funds. The following table shows the total return and the number of funds for four categories of mutual funds. Click on the datafile logo to reference the data. DATA file Type of Fund Domestic Equity Number of Funds Total Return (%) 9191 4.65 International Equity 2621 18.15 Hybrid 1419 2900 11.36 6.75 Specialty Stock a. Using the number of funds as weights, compute the weighted average total return for these mutual funds. (to 2 decimals) % b. Is there any difficulty associated with using the "number of funds" as the weights in computing the weighted average total return in part (a)? Discuss. What else might be used for weights? The input in the box below will not be graded, but may be reviewed and considered by your instructor. c. Suppose you invested $10,000 in this group of mutual funds and diversified the investment by placing $2000 in Domestic Equity funds, $4000 in International Equity funds, $3000 in Specialty Stock…arrow_forward
- The days to maturity for a sample of five money market funds are shown here. The dollar amounts invested in the funds are provided. Days to Maturity 20 Dollar Value ($ millions) 20 12 30 7 10 5 6 15 10 Use the weighted mean to determine the mean number of days to maturity for dollars invested in these five money market funds (to 1 decimal). daysarrow_forwardc. What are the first and third quartiles? First Quartiles (to 1 decimals) Third Quartiles (to 4 decimals) × ☑ Which companies spend the most money on advertising? Business Insider maintains a list of the top-spending companies. In 2014, Procter & Gamble spent more than any other company, a whopping $5 billion. In second place was Comcast, which spent $3.08 billion (Business Insider website, December 2014). The top 12 companies and the amount each spent on advertising in billions of dollars are as follows. Click on the datafile logo to reference the data. DATA file Company Procter & Gamble Comcast Advertising ($billions) $5.00 3.08 2.91 Company American Express General Motors Advertising ($billions) $2.19 2.15 ETET AT&T Ford Verizon L'Oreal 2.56 2.44 2.34 Toyota Fiat Chrysler Walt Disney Company J.P Morgan a. What is the mean amount spent on advertising? (to 2 decimals) 2.55 b. What is the median amount spent on advertising? (to 3 decimals) 2.09 1.97 1.96 1.88arrow_forwardMartinez Auto Supplies has retail stores located in eight cities in California. The price they charge for a particular product in each city are vary because of differing competitive conditions. For instance, the price they charge for a case of a popular brand of motor oil in each city follows. Also shown are the number of cases that Martinez Auto sold last quarter in each city. City Price ($) Sales (cases) Bakersfield 34.99 501 Los Angeles 38.99 1425 Modesto 36.00 294 Oakland 33.59 882 Sacramento 40.99 715 San Diego 38.59 1088 San Francisco 39.59 1644 San Jose 37.99 819 Compute the average sales price per case for this product during the last quarter? Round your answer to two decimal places.arrow_forward
- Consider the following data and corresponding weights. xi Weight(wi) 3.2 6 2.0 3 2.5 2 5.0 8 a. Compute the weighted mean (to 2 decimals). b. Compute the sample mean of the four data values without weighting. Note the difference in the results provided by the two computations (to 3 decimals).arrow_forwardExpert only,if you don't know it don't attempt it, no Artificial intelligence or screen shot it solvingarrow_forwardFor context, the image provided below is a quesion from a Sepetember, 2024 past paper in statistical modelingarrow_forward
- For context, the images attached below (the question and the related figure) is from a january 2024 past paperarrow_forwardFor context, the image attached below is a question from a June 2024 past paper in statisical modelingarrow_forwardFor context, the images attached below are a question from a June, 2024 past paper in statistical modelingarrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman