COLLEGE PHYSICS,VOLUME 1
COLLEGE PHYSICS,VOLUME 1
2nd Edition
ISBN: 9781319115104
Author: Freedman
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 93QAP
To determine

(a)

The tension in the rope.

Expert Solution
Check Mark

Answer to Problem 93QAP

The tension in the rope is 644N

Explanation of Solution

Givendata:

Distance, Δy=2.00m

Time, t=10.0s

Mass of Sue, mSue=66.0kg

Formula Used:

Newton's second law:

  Fnet=m×a

  v=ut+12at2

Calculation:

  COLLEGE PHYSICS,VOLUME 1, Chapter 4, Problem 93QAP , additional homework tip  1

We'll use two different but related coordinate systems for the two people.

For Sue, positive y will point upward.

For Paul, the axes will be parallel and perpendicular to the inclined plane, where up the ramp and out of the ramp are positive.

Tension from the rope pulling up and gravity pulling down are the only forces acting on

Sue.

Assuming her acceleration is constant, we can use the constant acceleration equations

and Newton's second law to calculate the magnitude of the tension.

Sue's acceleration:

  y=y0+v0yt+12ayt2=y0+0+12ayt2=>ay=2(Δy)t2=2(2.00m) (10.0s)2=0.0400m/s2

Free-body diagram of Sue:

  COLLEGE PHYSICS,VOLUME 1, Chapter 4, Problem 93QAP , additional homework tip  2

Newton's second law for Sue:

  Fext,y=TwSue=TmSueg=mSueayT=mSue(g+ay)=(66.0kg)(( 9.80 m/s2 )+( 0.0400 m/s2 ))=644N

Conclusion:

Thus, from theNewton's second law for Sue we have the tension in the rope joining them as 644N

To determine

(b)

Mass of Paul

Expert Solution
Check Mark

Answer to Problem 93QAP

Mass of Paul is 92.4kg

Explanation of Solution

Given data:

Distance, Δy=2.00m

Time, t=10.0s

Mass of Sue, mSue=66.0kg

Formula Used:

Newton's second law:

  Fnet=m×a

  v=ut+12at2

Calculation:

  COLLEGE PHYSICS,VOLUME 1, Chapter 4, Problem 93QAP , additional homework tip  3

We'll use two different but relatedcoordinate systems for the two people.

For Sue,positive y will point upward.

For Paul, the axes willbe parallel and perpendicular to the inclined plane,where up the ramp and out of the ramp are positive.

Tension from the rope pulling up and gravity pulling down are the only forces acting on

Sue.

Assuming her acceleration is constant, we can use the constant acceleration equations

and Newton's second law to calculate the magnitude of the tension.

Since Paul and Sue aretethered to one another, the magnitudes of their accelerations are equal.

The tension in therope and gravity are the only forces acting on Paul that have components that are parallel tothe face of the glacier. We can then solve the parallel component of Newton's second law forPaul's mass.

Sue's acceleration:

  y=y0+v0yt+12ayt2=y0+0+12ayt2=>ay=2(Δy)t2=2(2.00m) (10.0s)2=0.0400m/s2

Free-body diagram of Sue:

  COLLEGE PHYSICS,VOLUME 1, Chapter 4, Problem 93QAP , additional homework tip  4

Newton's second law for Sue:

  Fext,y=TwSue=TmSueg=mSueayT=mSue(g+ay)=(66.0kg)(( 9.80 m/s2 )+( 0.0400 m/s2 ))=644N

Free-body diagram of Paul:

  COLLEGE PHYSICS,VOLUME 1, Chapter 4, Problem 93QAP , additional homework tip  5

Newton's second law for Paul:

  Fext,parallel=TwPaul=TmPaulgsin(45.0)=mPaulaparallel=>mPaul=Ta parallel+gsin( 45.0)=644N( 0.0400 m/s2 )+( 9.80 m/s2 )sin( 45.0)=92.4kg

Conclusion:

Thus, by Newton's second law for Paul mass of Paul is 92.4kg

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
You are tasked with designing a parallel-plate capacitor using two square metal plates, eachwith an area of 0.5 m², separated by a 0.1 mm thick layer of air. However, to increase the capacitance,you decide to insert a dielectric material with a dielectric constant κ = 3.0 between the plates. Describewhat happens (and why) to the E field between the plates when the dielectric is added in place of theair.
Calculate the work required to assemble a uniform charge Q on a thin spherical shell of radiusR. Start with no charge and add infinitesimal charges dq until the total charge reaches Q, assuming thecharge is always evenly distributed over the shell’s surface. Show all steps.
Rod AB is fixed to a smooth collar D, which slides freely along the vertical guide shown in (Figure 1). Point C is located just to the left of the concentrated load P = 70 lb. Suppose that w= 17 lb/ft. Follow the sign convention. Part A Figure 3 ft -1.5 ft √30° 1 of 1 Determine the normal force at point C. Express your answer in pounds to three significant figures. ΜΕ ΑΣΦ Η vec Nc= Submit Request Answer Part B Determine the shear force at point C. Express your answer in pounds to three significant figures. VC= ΜΕ ΑΣΦΗ vec Submit Request Answer Part C Determine the moment at point C. Express your answer in pound-feet to three significant figures. Mc= Ο ΑΣΦ Η vec Submit Request Answer Provide Feedback ? ? lb lb ? lb-ft

Chapter 4 Solutions

COLLEGE PHYSICS,VOLUME 1

Ch. 4 - Prob. 11QAPCh. 4 - Prob. 12QAPCh. 4 - Prob. 13QAPCh. 4 - Prob. 14QAPCh. 4 - Prob. 15QAPCh. 4 - Prob. 16QAPCh. 4 - Prob. 17QAPCh. 4 - Prob. 18QAPCh. 4 - Prob. 19QAPCh. 4 - Prob. 20QAPCh. 4 - Prob. 21QAPCh. 4 - Prob. 22QAPCh. 4 - Prob. 23QAPCh. 4 - Prob. 24QAPCh. 4 - Prob. 25QAPCh. 4 - Prob. 26QAPCh. 4 - Prob. 27QAPCh. 4 - Prob. 28QAPCh. 4 - Prob. 29QAPCh. 4 - Prob. 30QAPCh. 4 - Prob. 31QAPCh. 4 - Prob. 32QAPCh. 4 - Prob. 33QAPCh. 4 - Prob. 34QAPCh. 4 - Prob. 35QAPCh. 4 - Prob. 36QAPCh. 4 - Prob. 37QAPCh. 4 - Prob. 38QAPCh. 4 - Prob. 39QAPCh. 4 - Prob. 40QAPCh. 4 - Prob. 41QAPCh. 4 - Prob. 42QAPCh. 4 - Prob. 43QAPCh. 4 - Prob. 44QAPCh. 4 - Prob. 45QAPCh. 4 - Prob. 46QAPCh. 4 - Prob. 47QAPCh. 4 - Prob. 48QAPCh. 4 - Prob. 49QAPCh. 4 - Prob. 50QAPCh. 4 - Prob. 51QAPCh. 4 - Prob. 52QAPCh. 4 - Prob. 53QAPCh. 4 - Prob. 54QAPCh. 4 - Prob. 55QAPCh. 4 - Prob. 56QAPCh. 4 - Prob. 57QAPCh. 4 - Prob. 58QAPCh. 4 - Prob. 59QAPCh. 4 - Prob. 60QAPCh. 4 - Prob. 61QAPCh. 4 - Prob. 62QAPCh. 4 - Prob. 63QAPCh. 4 - Prob. 64QAPCh. 4 - Prob. 65QAPCh. 4 - Prob. 66QAPCh. 4 - Prob. 67QAPCh. 4 - Prob. 68QAPCh. 4 - Prob. 69QAPCh. 4 - Prob. 70QAPCh. 4 - Prob. 71QAPCh. 4 - Prob. 72QAPCh. 4 - Prob. 73QAPCh. 4 - Prob. 74QAPCh. 4 - Prob. 75QAPCh. 4 - Prob. 76QAPCh. 4 - Prob. 77QAPCh. 4 - Prob. 78QAPCh. 4 - Prob. 79QAPCh. 4 - Prob. 80QAPCh. 4 - Prob. 81QAPCh. 4 - Prob. 82QAPCh. 4 - Prob. 83QAPCh. 4 - Prob. 84QAPCh. 4 - Prob. 85QAPCh. 4 - Prob. 86QAPCh. 4 - Prob. 87QAPCh. 4 - Prob. 88QAPCh. 4 - Prob. 89QAPCh. 4 - Prob. 90QAPCh. 4 - Prob. 91QAPCh. 4 - Prob. 92QAPCh. 4 - Prob. 93QAPCh. 4 - Prob. 94QAPCh. 4 - Prob. 95QAPCh. 4 - Prob. 96QAPCh. 4 - Prob. 97QAPCh. 4 - Prob. 98QAPCh. 4 - Prob. 99QAPCh. 4 - Prob. 100QAPCh. 4 - Prob. 101QAPCh. 4 - Prob. 102QAPCh. 4 - Prob. 103QAP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY