Concept explainers
(a)
The time of the jump and acceleration during the time.

Answer to Problem 91QAP
The time of the jump is
Explanation of Solution
Givendata:
Distance, for take-off speed
Distance for acceleration necessary to attain the required speed from rest
Final speed
Initial speed
Formula Used:
Newton's second law:
Calculation:
We are interested in the portionof the jump while the insect is still on the ground.
We can assume that the acceleration of theinsect is constant during this phase
In order to calculate the acceleration of the insect and thelength of time during this phase of the jump, we first need to calculate the speed with whichthe froghopper leaves the ground.
While the insect is in the air, it is only under the influenceof gravity, so we can use the constant acceleration equations and the height of the jump tocalculate the takeoff speed.
Once we have this value, we know the froghopper acceleratedfrom rest through a distance of
The forces acting on the insectwhile it is on the ground are the force of the ground on the froghopper pointing up (that is,the normal force) and the force of gravity pointing down.
After defining a coordinate systemwhere positive y points upward, we can calculate the magnitude of the normal force usingNewton's second law.
Takeoff speed is,
Acceleration necessary to attain that speed from rest is,
Time is,
Conclusion:
The time of the froghopper jump is
(b)
The free body diagram of the grasshopper during the leap.

Explanation of Solution
Free body diagram of the grasshopper during the leap is,
Where,
(c)
The force that ground exert on the froghopper during the jump in millinewtons and represent it as a multiple of insect's weight.

Answer to Problem 91QAP
The force that ground exert on the froghopper during the jump in millinewtons is
And the force
Explanation of Solution
Given data:
Distance, for take-off speed
Distance for acceleration necessary to attain the required speed from rest
Final speed
Initial speed
Formula Used:
Newton's second law:
Calculation:
We are interested in the portionof the jump while the insect is still on the ground.
We can assume that the acceleration of the insect is constant during this phase
In order to calculate the acceleration of the insect and the length of time during this phase of the jump. We first need to calculate the speed with which the froghopper leaves the ground.
While the insect is in the air, it is only under the influence of gravity, so we can use the constant acceleration equations and the height of the jump to calculate the takeoff speed.
Once we have this value, we know the froghopper accelerated from rest through a distance of
We can directly calculate the time because we are assuming the acceleration is constant.
The forces acting on the insect while it is on the ground are the force of the ground on the froghopper pointing up (that is, the normal force) and the force of gravity pointing down.
After defining a coordinate system where positive y points upward, we can calculate the magnitude of the normal force using Newton's second law.
froghopper's weight
This force is
Conclusion:
Thus, we have the value of force
And the force is
Want to see more full solutions like this?
Chapter 4 Solutions
COLLEGE PHYSICS-ACHIEVE AC (1-TERM)
- Small ice cubes, each of mass 5.60 g, slide down a frictionless track in a steady stream, as shown in the figure below. Starting from rest, each cube moves down through a net vertical distance of h = 1.50 m and leaves the bottom end of the track at an angle of 40.0° above the horizontal. At the highest point of its subsequent trajectory, the cube strikes a vertical wall and rebounds with half the speed it had upon impact. If 10 cubes strike the wall per second, what average force is exerted upon the wall? N ---direction--- ▾ ---direction--- to the top to the bottom to the left to the right 1.50 m 40.0°arrow_forwardThe magnitude of the net force exerted in the x direction on a 3.00-kg particle varies in time as shown in the figure below. F(N) 4 3 A 2 t(s) 1 2 3 45 (a) Find the impulse of the force over the 5.00-s time interval. == N⚫s (b) Find the final velocity the particle attains if it is originally at rest. m/s (c) Find its final velocity if its original velocity is -3.50 î m/s. V₁ m/s (d) Find the average force exerted on the particle for the time interval between 0 and 5.00 s. = avg Narrow_forward••63 SSM www In the circuit of Fig. 27-65, 8 = 1.2 kV, C = 6.5 µF, R₁ S R₂ R3 800 C H R₁ = R₂ = R3 = 0.73 MQ. With C completely uncharged, switch S is suddenly closed (at t = 0). At t = 0, what are (a) current i̟ in resistor 1, (b) current 2 in resistor 2, and (c) current i3 in resistor 3? At t = ∞o (that is, after many time constants), what are (d) i₁, (e) i₂, and (f) iz? What is the potential difference V2 across resistor 2 at (g) t = 0 and (h) t = ∞o? (i) Sketch V2 versus t between these two extreme times. Figure 27-65 Problem 63.arrow_forward
- Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. Thor's escape velocity is 33532.9 rad/s, the angular velocity is 8055.5 rad/s^2. While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? the hammer has a total mass of 20.0kg.arrow_forwardIf the room’s radius is 16.2 m, at what minimum linear speed does Quicksilver need to run to stay on the walls without sliding down? Assume the coefficient of friction between Quicksilver and the wall is 0.236.arrow_forwardIn the comics Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. A) If the distance from the end of the strap to the center of the hammer is 0.334 m, what angular velocity does Thor need to spin his hammer at to reach escape velocity? b) If the hammer starts from rest what angular acceleration does Thor need to reach that angular velocity in 4.16 s? c) While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? The hammer has a total mass of 20.0kg.arrow_forward
- The car goes from driving straight to spinning at 10.6 rev/min in 0.257 s with a radius of 12.2 m. The angular accleration is 4.28 rad/s^2. During this flip Barbie stays firmly seated in the car’s seat. Barbie has a mass of 58.0 kg, what is her normal force at the top of the loop?arrow_forwardConsider a hoop of radius R and mass M rolling without slipping. Which form of kinetic energy is larger, translational or rotational?arrow_forwardA roller-coaster vehicle has a mass of 571 kg when fully loaded with passengers (see figure). A) If the vehicle has a speed of 22.5 m/s at point A, what is the force of the track on the vehicle at this point? B) What is the maximum speed the vehicle can have at point B, in order for gravity to hold it on the track?arrow_forward
- This one wheeled motorcycle’s wheel maximum angular velocity was about 430 rev/min. Given that it’s radius was 0.920 m, what was the largest linear velocity of the monowheel?The monowheel could not accelerate fast or the rider would start spinning inside (this is called "gerbiling"). The maximum angular acceleration was 10.9 rad/s2. How long, in seconds, would it take it to hit maximum speed from rest?arrow_forwardIf points a and b are connected by a wire with negligible resistance, find the magnitude of the current in the 12.0 V battery.arrow_forwardConsider the two pucks shown in the figure. As they move towards each other, the momentum of each puck is equal in magnitude and opposite in direction. Given that v kinetic energy of the system is converted to internal energy? 30.0° 130.0 = green 11.0 m/s, and m blue is 25.0% greater than m 'green' what are the final speeds of each puck (in m/s), if 1½-½ t thearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





