Concept explainers
(a)
The time of the jump and acceleration during the time.

Answer to Problem 91QAP
The time of the jump is
Explanation of Solution
Givendata:
Distance, for take-off speed
Distance for acceleration necessary to attain the required speed from rest
Final speed
Initial speed
Formula Used:
Newton's second law:
Calculation:
We are interested in the portionof the jump while the insect is still on the ground.
We can assume that the acceleration of theinsect is constant during this phase
In order to calculate the acceleration of the insect and thelength of time during this phase of the jump, we first need to calculate the speed with whichthe froghopper leaves the ground.
While the insect is in the air, it is only under the influenceof gravity, so we can use the constant acceleration equations and the height of the jump tocalculate the takeoff speed.
Once we have this value, we know the froghopper acceleratedfrom rest through a distance of
The forces acting on the insectwhile it is on the ground are the force of the ground on the froghopper pointing up (that is,the normal force) and the force of gravity pointing down.
After defining a coordinate systemwhere positive y points upward, we can calculate the magnitude of the normal force usingNewton's second law.
Takeoff speed is,
Acceleration necessary to attain that speed from rest is,
Time is,
Conclusion:
The time of the froghopper jump is
(b)
The free body diagram of the grasshopper during the leap.

Explanation of Solution
Free body diagram of the grasshopper during the leap is,
Where,
(c)
The force that ground exert on the froghopper during the jump in millinewtons and represent it as a multiple of insect's weight.

Answer to Problem 91QAP
The force that ground exert on the froghopper during the jump in millinewtons is
And the force
Explanation of Solution
Given data:
Distance, for take-off speed
Distance for acceleration necessary to attain the required speed from rest
Final speed
Initial speed
Formula Used:
Newton's second law:
Calculation:
We are interested in the portionof the jump while the insect is still on the ground.
We can assume that the acceleration of the insect is constant during this phase
In order to calculate the acceleration of the insect and the length of time during this phase of the jump. We first need to calculate the speed with which the froghopper leaves the ground.
While the insect is in the air, it is only under the influence of gravity, so we can use the constant acceleration equations and the height of the jump to calculate the takeoff speed.
Once we have this value, we know the froghopper accelerated from rest through a distance of
We can directly calculate the time because we are assuming the acceleration is constant.
The forces acting on the insect while it is on the ground are the force of the ground on the froghopper pointing up (that is, the normal force) and the force of gravity pointing down.
After defining a coordinate system where positive y points upward, we can calculate the magnitude of the normal force using Newton's second law.
froghopper's weight
This force is
Conclusion:
Thus, we have the value of force
And the force is
Want to see more full solutions like this?
Chapter 4 Solutions
COLLEGE PHYSICS LL W/ 6 MONTH ACCESS
- A 75.0-kg person drops from rest a distance of 1.20 m to a platform of negligible mass supported by an ideal stiff spring of negligible mass. The platform drops 6.00 cm before the person comes to rest. What is the spring constant of the spring? Please do on paper and show all equations and work done to get to the final answer. Along with any helpful diagrams if needed. These are a part of my review questions in the book but i keep getting different answers from what the book says, it is not a graded assignment***arrow_forwardProblem Ten. A uniform rod is suspended in mechanical equilibrium by two strings. If T₁ = 500 N, what is the weight of the rod (in N)? 18.) (A) 120 N (D) 600 N (B) 900 N (C) 500 N (E) 220 N T T Mg STAY Carrow_forwardIn the figure, two boxes, each of mass 35 kg, are at rest and connected as shown. The coefficient of kinetic friction between the inclined surface and the box is 0.38. Find the speed of the boxes just after they have moved 5.5 m. Please do on paper and show all formulas and work done to get final answer This is a review problem , I just keep getting the wrong thing from what the textbook says , so i would like to see the work donearrow_forward
- A 64.0-kg skier starting from rest travels 200.0 m down a hill that has a 30.0° slope and a uniform surface. When the skier reaches the bottom of the hill, her speed is 30.0 m/s. How much work is done by friction as the skier comes down the hill? Please do on paper and show all the equations and work done to get to the final answer.arrow_forwardA 550-kg car moving at 18.5 m/s hits from behind a 560-kg car moving at 11.8 m/s in the same direction. If the new speed of the heavier car is 16.0 m/s, what is the speed of the lighter car after the collision, assuming that any unbalanced forces on the system are negligibly small? Please do on paper and show all equations and work done to get to the final answer. Along with any helpful diagrams if needed. These are a part of my review questions in the book but i keep getting different answers from what the book says, it is not a graded assignment***arrow_forwardA 150kg piano rolls down a 30° incline. A man tries to keep it from accelerating, and manages to keep its acceleration to 1.4 m/s^2 . If the piano rolls 8 m, what is the net work, in joules, done on it by all the forces acting on it? Please do it on paper and show all formulas and work used to get the answerarrow_forward
- The rectangular loop of wire shown in the figure (Figure 1) has a mass of 0.18 g per centimeter of length and is pivoted about side ab on a frictionless axis. The current in the wire is 8.5 A in the direction shown. Find the magnitude of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane. The answer is .028 T, I just need help understanding how to do it. Please show all steps.arrow_forwardA ray of light from an object you want to look at strikes a mirror so that the light ray makes a 32 degree angle relative to the normal line (a line perpendicular to the surface of the mirror at the point where the ray strikes the mirror). If you want to see the object in the mirror, what angle does your line of sight need to make relative to the normal line? Give your answer as the number of degrees.arrow_forwardSuppose you have a converging lens with a focal length of 65 cm. You hold this lens 120 cm away from a candle. How far behind the lens should you place a notecard if you want to form a clear image of the candle, on the card? Give your answer as the number of centimeters.arrow_forward
- Suppose you have a diverging lens with a focal length of - 25 cm. You look through this lens at a sleeping squirrel, and notice that it forms a virtual image of the squirrel with di = - 18 cm. How far away from the lens is the squirrel? Give your answer as the number of centimeters (a positive number).arrow_forwardDiamond has an index of refraction of about 2.4. Suppose you cut a diamond so it has a flat surface, and shine a laser pointer beam so that it makes a 27 degree angle with respect to the normal line to that surface. What angle will the laser beam make with respect to the normal after it passes through the air-diamond boundary and is inside the diamond? Give your answer as the number of degrees.arrow_forwardFind current of each line of D,E, and F. Where V1 is 9V, V2 is 7V, R1 is 989 , R2 is 2160, R3 is 4630 , R4 is 5530, R5 is 6720, and E is 16V. Please explain all steps. Thank youarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





