College Physics: Explore And Apply, Volume 2 (2nd Edition)
2nd Edition
ISBN: 9780134862910
Author: Eugenia Etkina, Gorazd Planinsic, Alan Van Heuvelen, Gorzad Planinsic
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 90GP
The mass of a spacecraft is about 480 kg. An engine designed to increase the speed of the spacecraft while in outer space provides 0.09-N thrust at maximum power. By how much does the engine cause the craft's speed to change in 1 week of running at maximum power? Describe any assumptions you made.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Assume the helium-neon lasers commonly used in student physics laboratories have power outputs of 0.250 mW.
(a) If such a laser beam is projected onto a circular spot 3.40 mm in diameter, what is its intensity (in watts per meter squared)?
27.5
W/m²
(b) Find the peak magnetic field strength (in teslas).
8.57e-7
X T
(c) Find the peak electric field strength (in volts per meter).
144
V/m
Identify the most likely substance
A proton moves at 5.20 × 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 × 103 N/C. Ignore any gravitational effects.
(a) Find the time interval required for the proton to travel 6.00 cm horizontally.
83.33
☑
Your response differs from the correct answer by more than 10%. Double check your calculations. ns
(b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.)
2.77
Your response differs from the correct answer by more than 10%. Double check your calculations. mm
(c) Find the horizontal and vertical components of its velocity after it has traveled 6.00 cm horizontally.
5.4e5
V
×
Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. I + [6.68e4
Your response differs significantly from the correct answer. Rework your solution from the beginning and check each…
Chapter 4 Solutions
College Physics: Explore And Apply, Volume 2 (2nd Edition)
Ch. 4 - Review Question 4.1 When does a vector have a...Ch. 4 - Review Question 4.2 The x- and y-components of...Ch. 4 - Review Question 4.3 What is the force of friction...Ch. 4 - Review Question 4.4 For problems involving objects...Ch. 4 - Review Question 4.5 Why do we need to resolve the...Ch. 4 - Review Question 4.6
You read in this section that...Ch. 4 - 1. A car accelerates along a road. Identify the...Ch. 4 - 2. A person pushes a 10-kg crate exerting a 200-N...Ch. 4 - Compare the ease of pulling a lawn mower and...Ch. 4 - 4. You simultaneously release two balls: one you...
Ch. 4 - You shoot an arrow with a bow. The following is...Ch. 4 - In what reference frame does a projectile launched...Ch. 4 - In Table 4.6 we found that the two balls touched...Ch. 4 - 8. While running at constant velocity, how should...Ch. 4 - 9. You hold a block on a horizontal, frictionless...Ch. 4 - 10. In the process described in the previous...Ch. 4 - Suppose that two blocks are positioned on an...Ch. 4 - 12. A box containing some stones is resting on a...Ch. 4 - For the following two questions, the answer...Ch. 4 - 14. A block is resting on a rough inclined...Ch. 4 -
15. A box with a heavy television set in it...Ch. 4 - 16. How can an Atwood machine be used to determine...Ch. 4 - 17. Your friend is on Rollerblades holding a...Ch. 4 - Explain why a car starts skidding when a driver...Ch. 4 - 19. Explain why old tires need to be replaced.
Ch. 4 - 20. Explain how friction helps you to walk.
Ch. 4 - 21. Explain why you might fall forward when you...Ch. 4 - Explain why you might fall backward when you slip.Ch. 4 - Explain why the tires of your car can spin out...Ch. 4 - You throw two identical balls simultaneously at...Ch. 4 - 25. Your friend says that the vertical force...Ch. 4 - Your friend says that a projectile launched at an...Ch. 4 - An object of mass m1 placed on an inclined plane...Ch. 4 - 28 An object of mass m1 placed on an inclined...Ch. 4 - 29. A horse is pulling a sled. If the force...Ch. 4 - 30. If you kick a block so that it starts moving...Ch. 4 - Determine the x- and y-components of each force...Ch. 4 - 2. Determine the x- and y-components of each force...Ch. 4 - * Determine the x- and y-components of each...Ch. 4 - 4 * The x- and y-components of several unknown...Ch. 4 - * The x- and y-scalar components of several...Ch. 4 - 6. * Three ropes pull on a knot shown in Figure...Ch. 4 - * Figure P4.7 shows an unlabeled force diagram for...Ch. 4 - For each of the following situations, draw the...Ch. 4 - * Write Newtons second law in component form for...Ch. 4 - For the situations described here, construct a...Ch. 4 - * Write Newtons second law in component form for...Ch. 4 - Apply Newtons second law in component form for the...Ch. 4 - Apply Newtons second law in component form for the...Ch. 4 - 14. * Equation Jeopardy 1 The three sets of...Ch. 4 - * You exert a force of 100 N on a rope that pulls...Ch. 4 - 16. * You exert a force of a known magnitude F on...Ch. 4 - * Olympic 100-m dash start At the start of his...Ch. 4 - 18. * Your own accelerometer A train has an...Ch. 4 - * EST Finn and Hazel are using a battery-powered...Ch. 4 - A 91.0-kg refrigerator sits on the floor. The...Ch. 4 - A 60-kg student sitting on a hardwood floor does...Ch. 4 - Car stopping distance and friction A car traveling...Ch. 4 - 23. * A 50-kg box rests on the floor. The...Ch. 4 - 24. * Marsha is pushing down and to the right on a...Ch. 4 - * You want to determine the coefficient of kinetic...Ch. 4 - * A wagon is accelerating to the right. A book is...Ch. 4 - s. Determine an expression for the minimum...Ch. 4 - * A car has a mass of 1520 kg. While traveling at...Ch. 4 - m/s2 when pulled by a rope exerting a 120-N force...Ch. 4 - 30. ** A crate of mass m sitting on a horizontal...Ch. 4 - * EST You absentmindedly leave your book bag on...Ch. 4 - 32. * Block 1 is on a horizontal surface with a...Ch. 4 - 33. * You want to use a rope to pull a 10-kg box...Ch. 4 - 34. * A car with its wheels locked rests on a...Ch. 4 - 35. Olympic skier Olympic skier Tina Maze skis...Ch. 4 - * Another Olympic skier Bode Miller. 80-kg...Ch. 4 - * A book slides off a desk that is tilted 15...Ch. 4 - * Helge, Steve, and Heidi are sitting on a sled on...Ch. 4 - 40. * When traveling on an airplane you get meals...Ch. 4 - 41. Skier A 52-kg skier starts at rest and slides...Ch. 4 - 42. * Ski rope tow You agree to build a backyard...Ch. 4 - 43. * Soapbox racecar A soapbox derby racecar...Ch. 4 - 44. * A person is pushing two carts that are...Ch. 4 - 45. * BIO Whiplash Experience A car sitting at...Ch. 4 - Iditarod race practice The dogs of four-time...Ch. 4 - angle above the horizontal. The other end of the...Ch. 4 - * Rope 1 pulls horizontally, exerting a force of...Ch. 4 - * Three sleds of masses m1,m2,m3 are on a smooth...Ch. 4 - 50. ** Repeat Problem 4.49 , only this time with...Ch. 4 - 51. * A skier is moving down a snowy hill with an...Ch. 4 - ** A person holds a 200-g block that is connected...Ch. 4 - 53. ** Two blocks of masses are connected to each...Ch. 4 - 54. ** The 20-kg block shown in Figure P4.54 ...Ch. 4 - * A squirrel jumps of a roof in the horizontal...Ch. 4 - * A frog jumps at an angle 30 above the...Ch. 4 - 57. A bowling ball rolls off a table. Draw a force...Ch. 4 - 58 * A tennis ball is served from the back line of...Ch. 4 - 59. * Equation Jeopardy 3 The equations below...Ch. 4 - 60 * EST An airplane is delivering food to a small...Ch. 4 - A ball moves in an arc through the air (see Figure...Ch. 4 - A marble is thrown as a projectile at an angle...Ch. 4 - 63 * Marbles are exiting a container through a...Ch. 4 - * Robbie Knievel ride On May 20, 1999, Robbie...Ch. 4 - 65. * Daring Darless wishes to cross the Grand...Ch. 4 - * A football punter wants to kick the ball so that...Ch. 4 - 67. * If you shoot a cannonball from the same...Ch. 4 - 68. When you actually perform the experiment...Ch. 4 - 69. * You can shoot an arrow straight up so that...Ch. 4 - 70. * Robin Hood wishes to split an arrow already...Ch. 4 - 71. * Three force diagrams for a car on a road are...Ch. 4 - * A minivan of mass 1560 kg starts at rest and...Ch. 4 - 74. * Emily pulls a 5-kg block across a rough...Ch. 4 - 75. * EST You abruptly push a 1.7-kg book along a...Ch. 4 - 76 ** EST In the situation of Problem 4.75,...Ch. 4 - 78. * Two blocks of masses and hang at the ends...Ch. 4 - 79. * A 3.5-kg object placed on an Inclined plane...Ch. 4 - above the horizontal) is connected by a string...Ch. 4 - above the horizontal) is connected by a string...Ch. 4 - 82 ** You are driving at a reasonable constant...Ch. 4 - 84. * In the situation of Problem 2.71 (Chapter 2...Ch. 4 - 87. * Your friend has a pie on the roof of his...Ch. 4 - * A ledge on a building is 20 m above the ground....Ch. 4 - 89. * You are hired to devise a method to...Ch. 4 - The mass of a spacecraft is about 480 kg. An...Ch. 4 - incline When she reaches the level floor at the...Ch. 4 - * Tell all A sled starts at the top of the hill...Ch. 4 - Professor tests airplane takeoff speed D. A....Ch. 4 - Professor tests airplane takeoff speed D A Wardle,...Ch. 4 - Professor tests airplane takeoff speed D A Wardle,...Ch. 4 - Professor tests airplane takeoff speed D. A....Ch. 4 - Choose the best velocity-versus-time graph below...Ch. 4 - Ski jumping in Vancouver The 2010 Olympic ski...Ch. 4 - Ski jumping in Vancouver The 2010 Olympic ski...Ch. 4 - Ski jumping in Vancouver The 2010 Olympic ski...Ch. 4 - Assume that the skier left the ramp moving...Ch. 4 - Ski jumping in Vancouver The 2010 Olympic ski...
Additional Science Textbook Solutions
Find more solutions based on key concepts
With the initial appearance of the feature we call Now Solve This, a short introduction is in order. The featur...
Concepts of Genetics (12th Edition)
When working on barley plants, two researchers independently identify a short-plant mutation and develop homozy...
Genetic Analysis: An Integrated Approach (3rd Edition)
The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil c...
Microbiology: An Introduction
With what geologic feature are the earthquakes in the mid-Atlantic associated?
Applications and Investigations in Earth Science (9th Edition)
Why is an endospore called a resting structure? Of what advantage is an endospore to a bacterial cell?
Microbiology: An Introduction
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (1) Fm Fmn mn Fm B W₁ e Fmt W 0 Fit Wt 0 W Fit Fin n Fmt n As illustrated in Fig. consider the person performing extension/flexion movements of the lower leg about the knee joint (point O) to investigate the forces and torques produced by muscles crossing the knee joint. The setup of the experiment is described in Example above. The geometric parameters of the model under investigation, some of the forces acting on the lower leg and its free-body diagrams are shown in Figs. and For this system, the angular displacement, angular velocity, and angular accelera- tion of the lower leg were computed using data obtained during the experiment such that at an instant when 0 = 65°, @ = 4.5 rad/s, and a = 180 rad/s². Furthermore, for this sys- tem assume that a = 4.0 cm, b = 23 cm, ß = 25°, and the net torque generated about the knee joint is M₁ = 55 Nm. If the torque generated about the knee joint by the weight of the lower leg is Mw 11.5 Nm, determine: = The moment arm a of Fm relative to the…arrow_forwardThe figure shows a particle that carries a charge of 90 = -2.50 × 106 C. It is moving along the +y -> axis at a speed of v = 4.79 × 106 m/s. A magnetic field B of magnitude 3.24 × 10-5 T is directed along the +z axis, and an electric field E of magnitude 127 N/C points along the -x axis. Determine (a) the magnitude and (b) direction (as an angle within x-y plane with respect to +x- axis in the range (-180°, 180°]) of the net force that acts on the particle. +x +z AB 90 +yarrow_forwardThree charged particles are located at the corners of an equilateral triangle as shown in the figure below (let q = 1.00 μC, and L = 0.850 m). Calculate the total electric force on the 7.00-μC charge. magnitude direction N ° (counterclockwise from the +x axis) y 7.00 με 9 L 60.0° x -4.00 μC ①arrow_forward
- (a) Calculate the number of electrons in a small, electrically neutral silver pin that has a mass of 9.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol. (b) Imagine adding electrons to the pin until the negative charge has the very large value 1.00 mC. How many electrons are added for every 109 electrons already present?arrow_forward(a) A physics lab instructor is working on a new demonstration. She attaches two identical copper spheres with mass m = 0.180 g to cords of length L as shown in the figure. A Both spheres have the same charge of 6.80 nC, and are in static equilibrium when 0 = 4.95°. What is L (in m)? Assume the cords are massless. 0.180 Draw a free-body diagram, apply Newton's second law for a particle in equilibrium to one of the spheres. Find an equation for the distance between the two spheres in terms of L and 0, and use this expression in your Coulomb force equation. m (b) What If? The charge on both spheres is increased until each cord makes an angle of 0 = 9.90° with the vertical. If both spheres have the same electric charge, what is the charge (in nC) on each sphere in this case? 9.60 Use the same reasoning as in part (a), only now, use the length found in part (a) and the new angle to solve for the charge. ncarrow_forwardA proton moves at 5.20 x 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 × 103 N/C. Ignore any gravitational effects. (a) Find the time interval required for the proton to travel 6.00 cm horizontally. 83.33 Your response differs from the correct answer by more than 10%. Double check your calculations. ns (b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.) 2.77 Your response differs from the correct answer by more than 10%. Double check your calculations. mm (c) Find the horizontal and vertical components of its velocity after it has traveled 6.00 cm horizontally. = 5.4e5 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. I + 6.68e4 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step…arrow_forward
- (a) A physics lab instructor is working on a new demonstration. She attaches two identical copper spheres with mass m = 0.180 g to cords of length L as shown in the figure. A Both spheres have the same charge of 6.80 nC, and are in static equilibrium when = 4.95°. What is L (in m)? Assume the cords are massless. 0.150 Draw a free-body diagram, apply Newton's second law for a particle in equilibrium to one of the spheres. Find an equation for the distance between the two spheres in terms of L and 0, and use this expression in your Coulomb force equation. m (b) What If? The charge on both spheres is increased until each cord makes an angle of 0 = 9.90° with the vertical. If both spheres have the same electric charge, what is the charge (in nC) on each sphere in this case? 13.6 ☑ Use the same reasoning as in part (a), only now, use the length found in part (a) and the new angle to solve for the charge. nCarrow_forwardA proton moves at 5.20 x 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 × 10³ N/C. Ignore any gravitational effects. (a) Find the time interval required for the proton to travel 6.00 cm horizontally. 1.15e-7 ☑ Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. ns (b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.) 5.33e-3 ☑ Your response is off by a multiple of ten. mm (c) Find the horizontal and vertical components of its velocity after it has traveled 6.00 cm horizontally. | ↑ + jkm/sarrow_forwardA proton moves at 5.20 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 103 N/C. Ignore any gravitational effects. (a) Find the time interval required for the proton to travel 6.00 cm horizontally. (b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.)arrow_forward
- The figure below shows the electric field lines for two charged particles separated by a small distance. 92 91 (a) Determine the ratio 91/92. 1/3 × This is the correct magnitude for the ratio. (b) What are the signs of q₁ and 92? 91 positive 92 negative ×arrow_forwardPlease help me solve this one more detail, thanksarrow_forwardA dielectric-filled parallel-plate capacitor has plate area A = 20.0 ccm2 , plate separaton d = 10.0 mm and dielectric constant k = 4.00. The capacitor is connected to a battery that creates a constant voltage V = 12.5 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . Find the energy U1 of the dielectric-filled capacitor. The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find the energy U2 of the capacitor at the moment when the capacitor is half-filled with the dielectric. The capacitor is now disconnected from the battery, and the dielectric plate is slowly removed the rest of the way out of the capacitor. Find the new energy of the capacitor, U3. In the process of removing the remaining portion of the dielectric from the disconnected capacitor, how much work W is done by the external agent acting on the dielectric?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Drawing Free-Body Diagrams With Examples; Author: The Physics Classroom;https://www.youtube.com/watch?v=3rZR7FSSidc;License: Standard Youtube License