Principles of Highway Engineering and Traffic Analysi (NEW!!)
6th Edition
ISBN: 9781119305026
Author: Fred L. Mannering, Scott S. Washburn
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 7P
To determine
The number of years for which the flexible pavement will last.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
12. Refer to Figure II-1 attached. A flexible pavement is to be evaluated according to the AASHTO 1972 design guide. The existing pavement has a weighted structural number=3.4, a regional factor=2.0, and a soil support value=4.5. What would be the approximated number of daily equivalent 18-kip axles to be allowed on this road for a 20-year analysis period?a. 10b. 33c. 100d. 1490
Don't attempt wrong , downvote for incorrect solution. A flexible pavement is known to have a structural number of 4.0 and a soil resilient modulus of 10,000 psi. If a pavement structure is to be designed for a life of 15 years, a reliability of 95% and an overall standard deviation of 0.35, how many passes of a design vehicle with a 18,000 lb single axle and a 34,000 lb tandem axle can be driven on the pavement per day? The pavement's initial PSI is 4.2 with a TSI of 2.5.
A flexible pavement was designed for the following daily traffic with a 12-year design life: 1300 single axles at 8,000 lb each, 900 tandem axles at 15,000 lb each, 20 single axles at 40,000 lb each, and 200 tandem axles at 40,000 lb each. The highway was designed with 4 inches of hot-mix asphalt (HMA) wearing surface, 4 inches of hot-mix asphaltic base, and 8 inches of crushed stone subbase. The reliability was 70%, overall standard deviation was 0.5, ¨PSI was 2.0 (with a TSI of 2.5), and all drainage coefficients were 1.0. What was the soil resilient modulus of the subgrade used in design?
Chapter 4 Solutions
Principles of Highway Engineering and Traffic Analysi (NEW!!)
Ch. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - Prob. 3PCh. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Prob. 7PCh. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10P
Ch. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - Prob. 20PCh. 4 - Prob. 21PCh. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - Prob. 24PCh. 4 - Prob. 25PCh. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - Prob. 29PCh. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - Prob. 32P
Knowledge Booster
Similar questions
- Q2: A pavement system must be designed to accommodate 1,000 20-kip single axle loads per day. The pavement should provide 99% reliability and accommodate a standard devation of 0.35. The pavement should be comprised of either a 10-inch concrete slab or a 6-inch hot-mix asphalt surface on top of a 7-inch dense-grade crushed stone base and a 10-inch crushed stone subbase. Determine whether the rigid or flexible pavement will lost longer given the following pavement and soil characteristics: • PSI = 4.5 (both pavements) • TSI = 2.5 (both pavements) • CD = 1.0 • E = 4,000,000 • k= 300 pci • J= 3.0 • M2 = M3 = 1.0 • MR = 12,500 psi • S' = 1,000 psi Use the AASHTO pavement design equations or nomograph.arrow_forwardThe AADTT of a 2-way (2-lane each way) highway is 10,000. The directional distribution may vary between 45 and 55% depending on season. The lane distribution may vary between 60 and 75%. The driving lane always carries more loads compared to the passing lane. The growth factor for the pavement is 3.5%. Based on the above information, calculate the design AADTT for the driving lane if the pavement service life is 20 years.arrow_forwardA flexible pavement was initially designed with 2 inches of sand-mix asphaltic wearing surface, 9 inches of dense-graded crushed stone base, 8 inches of crushed stone subbase. The base has a drainage coefficient of 0.90, while the subbase drainage coefficient is 1.0. If pavement is designed for 54-kip tandem axles vehicles, by how much daily traffic can be increased if wearing layer will be increased by 3 inches. State your answer in % in a form 00.00%. Round SN value to the nearest integer.arrow_forward
- 2. You are asked to design a new flexible pavement structure for an existing road that will be totally replaced. You are provided with the following borehole results: a) Existing (Old) HMA - 135 mm b) Existing (Old) Granular A Base - 170 mm c) Existing (Old) Granular B Subbase - 340 mm d) Gravelly Silty Sand (Till) Subgrade (25 % 5-75 um) What is the current GBE for the existing pavement structure? What is the GBE for the same pavement structure when it was newly constructed?arrow_forwardYou have been asked to design the pavement for an access highway to a major truck terminal. The design daily truck traffic consists of the following: 80 single axles at 22,500 lb each, 570 tandem axles at 25,000 lb each, 50 tandem axles at 39,000 lb each, and 80 triple axles at 48,000 lb each. The highway is to be designed with rigid pavement having a modulus of rupture of 600lb/in2 and a modulus of elasticity of 5 million lb/in2. The reliability is to be 95%, the overall standard deviation is 0.4, the drainage coefficient is 0.9, ¨PSI is 1.7 (with a TSI of 2.5), and the load transfer coefficient is 3.2. The modulus of subgrade reaction is 200 lb/in3. If a 20-year design life is to be used, determine the required slab thicknessarrow_forwardA flexible pavement is to be designed to last 10 years. The initial PSI is 4.2 and the TSI (the final PSI) is determined to be 2.5. The subgrade has a soil resilient modulus of 15,000 lb/in². Reliability is 95% with an overall standard deviation of 0.35. For design, the daily car, pickup truck and light van traffic is 40,000 and the daily truck traffic consists of 1500 passes of single-unit trucks with two single axles and 325 passes of tractor semi-trailer trucks with single, tandem, and triple axles. The axle weights are: Cars, pickups, light vans = two 2 kip single axles Single-unit truck = 8 kip single axle and 24 kip single axle Tractor semi-trailer truck = 10 kip single axle, 18 kip tandem axle, and 42 kip triple axle. ● ● M₂ and M3 are equal to 1 for the materials in the pavement structure. Four inches of hot- mix asphalt (HMA) is to be used as the wearing surface and 10 inches of crushed stone as the subbase. Determine the thickness required for the base if soil cement is the…arrow_forward
- Please help with this question Thanksarrow_forwardDesign traffic?arrow_forwardQ/ A flexible pavement was designed for the following daily traffic with a 12-year design life: 1300 single axles at 8,000 lb each, 900 tandem axles at 15,000 lb each, 20 single axles at 40,000 lb each, and 200 tandem axles at 40,000 lb each. The highway was designed with 4 inches of hot-mix asphalt (HMA) wearing surface, 4 inches of hot-mix asphaltic base, and 8 inches of crushed stone subbase. The reliability was 70%, overall standard deviation was 0.5, APSI was 2.0 (with a TSI of 2.5), and all drainage coefficients were 1.0. What was the soil resilient modulus of the subgrade used in design?arrow_forward
- Using the suitable diagram, describe the structures of the following pavements: In rigid pavement, the Portland Cement Concrete (PCC) surface has high stiffness value. Explain about this high stiffness value which affect the sub-grade layer of the road.arrow_forwardUsing the AASHTO rigid design procedure, design a pavement for a provincial road with an expected design ESAL of 20 x 106. The pavement structure is to consist of Portland cement concrete with an elastic modulus of 5.0 x 106 psi and a modulus of rupture of 550 psi, and a 12 in. thick unbounded granular material as subbase. The pavement is to be plain jointed and jointed reinforced concrete with tied P.C.C. shoulder and having load transfer devices. The climate consists of a wet season (November-April) and a dry season (May-October). Freezing of the subbase and subgrade is considered negligible. The elastic modulus of the subbase is 20,000 psi during the dry season and 15,000 psi during the wet season. The elastic modulus of the subgrade is 6,000 psi during the dry season and 3,500 psi during the wet season. The subgrade depth to the bedrock is 5ft. It is estimated that it will take a day for water to drain from the pavement and that the pavement will be saturated about 20 percent of…arrow_forwardQ2: The traffic on the design lane of a proposed four-lane rural interstate highway consists of 40% trucks. If classification studies have shown that the truck factor can be taken as 0.45, design a suitable flexible pavement using the 1993 AASHTO procedure if the AADT on the design lane during the first year of operation is 1150, pi = 4.5, and pt = 2.5 . Growth rate = 3% Design life = 20 years Reliability level = 95% Standard deviation = 0.45 The pavement structure will be exposed to moisture levels approaching saturation 20% of the time, and it will take about one week for drainage of water. Effective CBR of the subgrade material is 7. CBR of the base and subbase are 70 and 22, respectively, and Mr for the asphalt mixture, 3102 MPa (450,000 lb/in2).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning
Structural Analysis (10th Edition)
Civil Engineering
ISBN:9780134610672
Author:Russell C. Hibbeler
Publisher:PEARSON
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Fundamentals of Structural Analysis
Civil Engineering
ISBN:9780073398006
Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:McGraw-Hill Education
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning