Principles of Highway Engineering and Traffic Analysi (NEW!!)
6th Edition
ISBN: 9781119305026
Author: Fred L. Mannering, Scott S. Washburn
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 16P
To determine
The durability of the pavement if the reliability is
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
4.13) A rigid pavement is being designed with the same parameters as used in Problem 4.5. The modulus of subgrade reaction is 300 1b/in? and the slab thickness is determined to be 8.5 inches. The load transfer coefficient is 3.0, the drainage coefficient is 1.0, and the modulus of elasticity is 4 million Ib/in?. What is the design modulus of rupture? (Assume that any parameters not given in this problem are the same as those given in Problem 4.5.)
4.5 has been added for reference.
A rigid pavement is being designed with the same parameters as used in Problem 4.5. The modulus of subgrade reaction is 300 lb/in? and the slab thickness is determined to be 8.5 inches. The load transfer coefficient is 3.0, the drainage coefficient is 1.0, and the modulus of elasticity is 4 million 1b/in?. What is the design modulus of rupture? (Assume that any parameters not given in this problem are the same as those given in Problem 4.5.)
4.5 for reference:
A flexible pavement was designed for the following daily traffic with a 12-year design life: 1300 single axles at 8000 Ib each, 900 tandem axles at 15,000 1b each, 20 single axles at 40,000 Ib each, and200 tandem axles at 40,000 lb each. The highway was designed with 4 inches of HMA wearing surface,
12
Chapter 4 Solutions
Principles of Highway Engineering and Traffic Analysi (NEW!!)
Ch. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - Prob. 3PCh. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Prob. 7PCh. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10P
Ch. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - Prob. 20PCh. 4 - Prob. 21PCh. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - Prob. 24PCh. 4 - Prob. 25PCh. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - Prob. 29PCh. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - Prob. 32P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- A rigid pavement is used with a modulus of subgrade reaction of 200 lb/in3, a slab thickness of 8 inches, a load transfer coefficient of 3.2, a modulus of elasticity of 5 million lb/in2, a modulus of rupture of 600 lb/in2, a reliability of 85%,a standard deviation of 0.30, PSI = 2.2(TSI=2.5),and a drainage coefficient of 1.0. How many years would the pavement be expected to last based on the following traffic data?arrow_forwardPlease I want the solution quickly I have an exam!!arrow_forwardA rigid pavement is to be used to carry a wheel load of 53.5 kN. Design the thickness at the edge and at the center of the pavement. The allowable tensile stress of concrete is 1.38 MPa. Sufficient dowels are used across the joints.arrow_forward
- 6.1 A set of dual tires is spaced at 34 in. center to center and carries a total load of 45,000 lb with a tire pressure of 100 psi. Assuming the pavement to be a homogeneous half-space, determine the ESWL for a pavement of 25 in. using (a) the Boyd and Foster method, (b) the Foster and Ahlvin method, and (c) Huang's chart based on equal contact radius. [Answer: 32,200 lb, 32,800 lb, 32,800 lb]arrow_forwardi need an answer immediately. thank you Design the thickness of a pavement to carry a wheel load of 52kN based on the following conditions and type of pavement. A pavement with maximum CBR value of 8% for the subgrade soil supporting this load. The tire pressure is equal to 4kg/cm².Use U.S. Corps of Engineers Formula.arrow_forwardCompare flexible and rigid pavement construction for a new highway.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning