Concept explainers
(a)
Maximum and minimum upward force that the supporting cables exert on the elevator car.
(a)

Answer to Problem 72P
Maximum force is
Minimum force is
Explanation of Solution
Write the equation of force exerted by the supporting cables on the elevator car.
Here
Write the equation of force due to gravity
Here
Then the maximum force would be
The minimum force would be
Conclusion
Substitute
Substitute
Maximum force is
Minimum force is
(b)
Minimum time to ascent from the lobby to the observation deck.
(b)

Answer to Problem 72P
The time is
Explanation of Solution
Write the expression to find the time taken to reach the maximum ascent speed.
Here,
Write the expression to find the distance covered during acceleration.
Here,
Write the expression to find the distance covered.
Here,
Conclusion:
Substitute
Vertical distance covered during this time is,
Substitute
Remaining vertical distance is,
Elevator moves with uniform speed to cover this distance.
Expression to calculate the time taken to cover this distance,
Substitute
The minimum time taken by the elevator to ascend from the lobby to the observation desk is,
Substitute
Therefore, the minimum time taken by the elevator to ascend from the lobby to the observation desk is
(c)
Maximum and minimum values of a passenger’s apparent weight during the ascend.
(c)

Answer to Problem 72P
The maximum weight during the ascent is
The minimum weight during the ascend is
Explanation of Solution
The maximum weight would be
Here
The minimum weight would be
Conclusion
Substitute
Substitute
The maximum weight during the ascent is
The minimum weight during the ascend is
(d)
Minimum time for the elevator to descend to the lobby.
(d)

Answer to Problem 72P
The time is
Explanation of Solution
Write the expression to find the time taken to reach the maximum decent speed.
Here,
Write the expression to find the distance covered during acceleration.
Here,
Write the expression to find the distance covered.
Here,
Conclusion
Substitute
Vertical distance covered during this time is,
Substitute
Remaining vertical distance is,
Elevator moves with uniform speed to cover this distance.
Expression to calculate the time taken to cover this distance,
Substitute
The minimum time taken by the elevator to ascend from the lobby to the observation desk is,
Substitute
Therefore, the minimum time taken by the elevator to ascend from the lobby to the observation desk is
Want to see more full solutions like this?
Chapter 4 Solutions
COLLEGE PHYICS
- singly A samply ionized helium atom is in the ground state. It absorbs energy and makes a transition to the n=7 excited state. The ion returns to wo the wavelength the ground state by emitting SIX photons ONLY. What is the of the second highest energy photon ?arrow_forwardAn electron, traveling at a speed of 5.60x10° m/s, strikes the target of an X-ray tube. Upon impart, the eletion decelerates to one-third of it's original speed, with an X-ray photon being emitted in the process. What is the wavelength of the photon? m.arrow_forwardCan you help me solve this 2 question and teach me what we use to solve thisarrow_forward
- You are working during the summer at a company that builds theme parks. The company is designing an electromagnetic propulsion system for a new roller coaster. A model of a substructure of the device appears in the figure below. Two parallel, horizontal rails extend from left to right, with one rail behind the other. A cylindrical rod rests on top of and perpendicular to the rails at their left ends. The distance between the rails is d and the length of the rails is L. The magnetic field vector B points vertically down, perpendicular to the rails. Within the rod, the current I flows out of the page, from the rail in the back toward the rail in the front. The rod is of length d = 1.00 m and mass m = 0.700 kg. The rod carries a current I = 100 A in the direction shown and rolls along the rails of length L = 20.0 m without slipping. The entire system of rod and rails is immersed in a uniform downward-directed magnetic field with magnitude B = 2.30 T. The electromagnetic force on the rod…arrow_forwardBased on the graph, explain how centripetal force is affected when the hanging mass changes. Does your graph verify the relationship in the equation r = x^i + y^j = r cos ωt I + r sin ωt^j?arrow_forwardCan you help me to solve this two questions can you teach me step by step how to solve it.arrow_forward
- Given: ruler 11.56 g, small washer 1.85 g each, large washer 24.30g each Use the data in Data Tables 4 and 5 to experimentally determine the mass of your ruler. Use one of your 2 trials with 1 small washer at 0 cm, one of your 2 trials with 2 small washers at 0 cm, and one of your 2 trials with 3 small washers at 0 cm to find three experimental values for the mass of the ruler. How do you experimentalls determine the mass?arrow_forwardCompare the 3 experimental masses of your ruler to the measured mass of your ruler (Data Table 1) by calculating the percent error for each experimental value. Which trial provided the best data for determining the mass of the ruler? Please help, I am not sure how to calculate this. Thanks!arrow_forwardPlease help, everytime I try to input the data only one point shows on the graph. Please graph unsing centripetal force, Fc, versus V E2 from Activity 1. Include a line of best fit and record the equation of the line. Thank you!arrow_forward
- Please help, everytime I try to input the data only one point shows on the graph. Graph of centripetal force, Fc, versus V E2 from Activity 1. Include a line of best fit and record the equation of the line.arrow_forwardBased on your graph, explain how centripetal force is affected when the hanging mass changes. Does your graph verify the relationship in the equation r = x^i + y^j = r cos ωt I + r sin ωt^j?arrow_forwardDid your experiment results in Data Table 3 verify, to within a reasonable experimental error, the condition of equilibrium of Equation 6: Στanti-clockwise = Στclockwise? Support your response with experimental data. My data shows that they are not equal to each other. So what does this mean? Thanks!arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





