Practical Management Science
5th Edition
ISBN: 9781305250901
Author: Wayne L. Winston, S. Christian Albright
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 70P
Summary Introduction
To determine: The way Company can maximize the profit.
Linear programming:
It is a mathematical modeling procedure where a linear function is maximized or minimized subject to certain constraints. This method is widely useful in making a quantitative analysis which is essential for making important business decisions.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
There are two companies manufacturing drones. Company A manufactures mass market drones, while company B manufactures customised drones according to customers’ requirements. In 2020, company A produces 3,200 drones, 3% of which were found to be defective and cannot pass the quality check. Company A employs 5 workers working an average of 8 hours a day in the drone production, and they worked 200 working days in 2020.In contrast, company B produces 900 drones, 10% of which were found to be defective and cannot pass the quality check. Company B employs 3 workers working an average of 6 hours a day in the drone production, and they worked 170 days in 2020.
(a) If the drone manufacturing is seen as a process, what is considered as the output of the production processes of companies A and B and why?
(b) Measure the single-factor manpower productivity for the two companies.
(c) Is it reasonable to compare the manpower productivity of the two companies and reach a conclusion that one company…
A manufacturer has a production facility that requires 10,237 units of component JY21 per year.
Following a long-term contract, the manufacturer purchases component JY21 from a supplier with
a lead time of 6 days. The unit purchase cost is $31.4 per unit. The cost to place and process an
order from the supplier is $168 per order. The unit inventory carrying cost per year is 12.2 percent
of the unit purchase cost. The manufacturer operates 250 days a year. Assume EOQ model is
appropriate. If the manufacturer uses a constant order quantity of 1,053 units per order, what is
the annual holding cost?
Use at least 4 decimal places.
A company owns a 5-year-old turret lathe that has a book value of $23,000. The present market value for the lathe is $18,000. The expected decline in market value is $1,700/year to a minimum market value of $4,080; maintenance plus operating costs for the lathe equal $4,470/year.A new turret lathe can be purchased for $46,000 and will have an expected life of 8 years. The market value for the turret lathe is expected to equal $46,000(0.70)k at the end of year k. Annual maintenance and operating cost is expected to equal $1,900. Based on a 12% MARR, should the old lathe be replaced now? Use an equivalent uniform annual cost comparison, a planning horizon of 7 years, and the cash flow approach.EUAC for keeping old turret lathe: $EUAC for replacing turret lathe: $
Chapter 4 Solutions
Practical Management Science
Ch. 4.2 - Prob. 1PCh. 4.2 - Prob. 2PCh. 4.2 - Prob. 3PCh. 4.2 - Prob. 4PCh. 4.2 - Prob. 5PCh. 4.2 - Prob. 6PCh. 4.3 - Prob. 7PCh. 4.3 - Prob. 8PCh. 4.3 - Prob. 9PCh. 4.3 - Prob. 10P
Ch. 4.3 - Prob. 11PCh. 4.3 - Prob. 12PCh. 4.4 - Prob. 13PCh. 4.4 - Prob. 14PCh. 4.4 - Prob. 15PCh. 4.4 - Prob. 16PCh. 4.4 - Prob. 17PCh. 4.4 - Prob. 18PCh. 4.4 - Prob. 19PCh. 4.5 - Prob. 20PCh. 4.5 - Prob. 21PCh. 4.5 - Prob. 22PCh. 4.5 - Prob. 23PCh. 4.5 - Prob. 24PCh. 4.5 - Prob. 25PCh. 4.6 - Prob. 26PCh. 4.6 - Prob. 27PCh. 4.6 - Prob. 28PCh. 4.6 - Prob. 29PCh. 4.7 - Prob. 30PCh. 4.7 - Prob. 31PCh. 4.7 - Prob. 32PCh. 4.7 - Prob. 33PCh. 4.7 - Prob. 34PCh. 4.7 - Prob. 35PCh. 4.7 - Prob. 36PCh. 4.7 - Prob. 37PCh. 4.7 - Prob. 38PCh. 4.7 - Prob. 39PCh. 4.7 - Prob. 40PCh. 4.8 - Prob. 41PCh. 4.8 - Prob. 42PCh. 4.8 - Prob. 43PCh. 4.8 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Prob. 62PCh. 4 - Prob. 63PCh. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - Prob. 68PCh. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - Prob. 73PCh. 4 - Prob. 74PCh. 4 - Prob. 75PCh. 4 - Prob. 76PCh. 4 - Prob. 77PCh. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - Prob. 80PCh. 4 - Prob. 81PCh. 4 - Prob. 82PCh. 4 - Prob. 83PCh. 4 - Prob. 84PCh. 4 - Prob. 85PCh. 4 - Prob. 86PCh. 4 - Prob. 87PCh. 4 - Prob. 88PCh. 4 - Prob. 89PCh. 4 - Prob. 90PCh. 4 - Prob. 91PCh. 4 - Prob. 92PCh. 4 - Prob. 93PCh. 4 - Prob. 94PCh. 4 - Prob. 95PCh. 4 - Prob. 96PCh. 4 - Prob. 97PCh. 4 - Prob. 98PCh. 4 - Prob. 99PCh. 4 - Prob. 100PCh. 4 - Prob. 101PCh. 4 - Prob. 102PCh. 4 - Prob. 103PCh. 4 - Prob. 104PCh. 4 - Prob. 105PCh. 4 - Prob. 106PCh. 4 - Prob. 107PCh. 4 - Prob. 108PCh. 4 - Prob. 109PCh. 4 - Prob. 110PCh. 4 - Prob. 111PCh. 4 - Prob. 112PCh. 4 - Prob. 113PCh. 4 - Prob. 114PCh. 4 - Prob. 115PCh. 4 - Prob. 116PCh. 4 - Prob. 117PCh. 4 - Prob. 118PCh. 4 - Prob. 119PCh. 4 - Prob. 120PCh. 4 - Prob. 121PCh. 4 - Prob. 122PCh. 4 - Prob. 123PCh. 4 - Prob. 124PCh. 4 - Prob. 125PCh. 4 - Prob. 126PCh. 4 - Prob. 127PCh. 4 - Prob. 128PCh. 4 - Prob. 129PCh. 4 - Prob. 130PCh. 4 - Prob. 131PCh. 4 - Prob. 132PCh. 4 - Prob. 133PCh. 4 - Prob. 134PCh. 4 - Prob. 135P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- The Tinkan Company produces one-pound cans for the Canadian salmon industry. Each year the salmon spawn during a 24-hour period and must be canned immediately. Tinkan has the following agreement with the salmon industry. The company can deliver as many cans as it chooses. Then the salmon are caught. For each can by which Tinkan falls short of the salmon industrys needs, the company pays the industry a 2 penalty. Cans cost Tinkan 1 to produce and are sold by Tinkan for 2 per can. If any cans are left over, they are returned to Tinkan and the company reimburses the industry 2 for each extra can. These extra cans are put in storage for next year. Each year a can is held in storage, a carrying cost equal to 20% of the cans production cost is incurred. It is well known that the number of salmon harvested during a year is strongly related to the number of salmon harvested the previous year. In fact, using past data, Tinkan estimates that the harvest size in year t, Ht (measured in the number of cans required), is related to the harvest size in the previous year, Ht1, by the equation Ht = Ht1et where et is normally distributed with mean 1.02 and standard deviation 0.10. Tinkan plans to use the following production strategy. For some value of x, it produces enough cans at the beginning of year t to bring its inventory up to x+Ht, where Ht is the predicted harvest size in year t. Then it delivers these cans to the salmon industry. For example, if it uses x = 100,000, the predicted harvest size is 500,000 cans, and 80,000 cans are already in inventory, then Tinkan produces and delivers 520,000 cans. Given that the harvest size for the previous year was 550,000 cans, use simulation to help Tinkan develop a production strategy that maximizes its expected profit over the next 20 years. Assume that the company begins year 1 with an initial inventory of 300,000 cans.arrow_forwardIn this version of dice blackjack, you toss a single die repeatedly and add up the sum of your dice tosses. Your goal is to come as close as possible to a total of 7 without going over. You may stop at any time. If your total is 8 or more, you lose. If your total is 7 or less, the house then tosses the die repeatedly. The house stops as soon as its total is 4 or more. If the house totals 8 or more, you win. Otherwise, the higher total wins. If there is a tie, the house wins. Consider the following strategies: Keep tossing until your total is 3 or more. Keep tossing until your total is 4 or more. Keep tossing until your total is 5 or more. Keep tossing until your total is 6 or more. Keep tossing until your total is 7 or more. For example, suppose you keep tossing until your total is 4 or more. Here are some examples of how the game might go: You toss a 2 and then a 3 and stop for total of 5. The house tosses a 3 and then a 2. You lose because a tie goes to the house. You toss a 3 and then a 6. You lose. You toss a 6 and stop. The house tosses a 3 and then a 2. You win. You toss a 3 and then a 4 for total of 7. The house tosses a 3 and then a 5. You win. Note that only 4 tosses need to be generated for the house, but more tosses might need to be generated for you, depending on your strategy. Develop a simulation and run it for at least 1000 iterations for each of the strategies listed previously. For each strategy, what are the two values so that you are 95% sure that your probability of winning is between these two values? Which of the five strategies appears to be best?arrow_forwardIt costs a pharmaceutical company 75,000 to produce a 1000-pound batch of a drug. The average yield from a batch is unknown but the best case is 90% yield (that is, 900 pounds of good drug will be produced), the most likely case is 85% yield, and the worst case is 70% yield. The annual demand for the drug is unknown, with the best case being 20,000 pounds, the most likely case 17,500 pounds, and the worst case 10,000 pounds. The drug sells for 125 per pound and leftover amounts of the drug can be sold for 30 per pound. To maximize annual expected profit, how many batches of the drug should the company produce? You can assume that it will produce the batches only once, before demand for the drug is known.arrow_forward
- Three methods can be used for producing heat sensors for high-temperature furnaces. Method A will have a fixed cost of $140,000 per year and a production cost of $62 per part. Method B will have a fixed cost of $210,000 per year and a production cost of $28 per part. Method C will require the purchase of equipment costing $500,000. It will have a life of five years and a 25% of first cost salvage value. The production cost will be $53 per part. At an interest rate of 10% per year, determine the breakeven annual production rate between the two lowest cost methods.arrow_forwardA young computer engineer has $12,000 to invest and three different investment options (funds) to choose from. Type 1 guaranteed investment funds offer an expected rate of return of 7%, Type 2 mixed funds (part is guaranteed capital) have an expected rate of return of 8%, while an investment on the Stock Exchange involves an expected rate of return of 12%, but without guaranteed investment capital. Computer engineer has decided not to invest more than $2,000 on the Stock Exchange in order to minimize the risk. Moreover for tax reasons, she needs to invest at least three times more in guaranteed investment funds than in mixed funds. Assume that at the end of the year the returns are those expected; she is trying to determine the optimum investment amounts. (a) Express this problem as a linear programming model with two decision variables.(b) Solve the problem with the graphical solution procedure and define the optimum solution.arrow_forwardBarbara Flynn sells papers at a newspaper stand for $0.40. The papers cost her $0.30, giving her a $0.10 profit on each one she sells. From past experience Barbara knows that: a) 20% of the time she sells 150 papers. b) 20% of the time she sells 200 papers. c) 30% of the time she sells 250 papers. d) 30% of the time she sells 300 papers. Assuming that Barbara believes the cost of a lost sale to be $0.05 and any unsold papers cost her $0.30 and she orders 250 papers. Use the following random numbers: 14, 4, 13, 9, and 25 for simulating Barbara's profit. (Note: Assume the random number interval begins at 01 and ends at 00.) Based on the given probability distribution and the order size, for the given random number Barbara's sales and profit are (enter your responses for sales as integers and round all profit responses to two decimal places): Random Number Sales Profit 14 4 13 9 25arrow_forward
- FRUIT COMPUTER COMPANY Fruit Computer Company manufactures memory chips in batches of ten chips. From past experience, Fruit knows that 80% of all batches contain 10% (1 out of 10) defective chips, and 20% of all batches contain 50% (5 out of 10) defective chips. If a good (that is, 10% defective) batch of chips is sent to the next stage of production, processing costs of $4000 are incurred, and if a bad batch (50% defective) is sent on to the next stage of production, processing costs of $16000 are incurred. Fruit also has the alternative of reworking a batch at a cost of $4000. A reworked batch is sure to be a good batch. Alternatively, for a cost of $400, Fruit can test one chip from each batch in an attempt to determine whether the batch is defective. QUESTIONS 1.Determine a strategy so Fruit can minimize the expected total cost per batch. 2.Compute the EVSI and EVPI.arrow_forwardmoney borrowed for personal reasons; to be repaid within a specific time frame and with added interest money borrowed for the purchase of real estate; to be repaid within a specific time frame and with added interest money borrowed for business reasons; to be repaid within a specific time frame and with added interest money borrowed for the purchase of a vehicle; to be repaid within a specific time frame and with added interest : Business Loan :: Auto Loan :: Mortgage Loan :: Personal Loan 1 4 6. 8. 9. Finish Siarrow_forwardA Las Vegas, Nevada, manufacturer has the option to make or buy one of its component parts. The annual requirement is 20,000 units. A supplier is able to supply the parts for $10 per piece. The firm estimates that it costs $600 to prepare the contract with the supplier. To make the parts in-house, the firm must invest $50,000 in capital equipment, and the firm estimates that it costs $8 per piece to make the parts in-house. Assuming that cost is the only criterion, use breakeven analysis to determine whether the firm should make or buy the item. 1. What is the breakeven quantity? 2. Should the manufacturer Make or Buy? 3. What is the cost savings using your decision in number 2 (above)? Show the total cost for each scenario then the savings amount.arrow_forward
- The Decision Sciences Department is trying todetermine whether to rent a slow or a fast copier. Thedepartment believes that an employee’s time is worth$15 per hour. The slow copier rents for $4 per hour,and it takes an employee an average of 10 minutes tocomplete copying. The fast copier rents for $15 per hour,and it takes an employee an average of six minutes tocomplete copying. On average, four employees per hourneed to use the copying machine. (Assume the copyingtimes and interarrival times to the copying machineare exponentially distributed.) Which machine shouldthe department rent to minimize expected total cost perhour?arrow_forwardA bhaliyaarrow_forwardBruin Properties is in escrow to buy a 175,000 square foot shopping center in Camarillo, California for $35,000,000. Bruin Properties can borrow $24,000,000 fixed rate fully amortizing over 30 years at a 6.0% annual interest rate with equal monthly payments of principal and interest or it can borrow $28,000,000 fixed rate fully amortizing over 30 years at a 7.0% annual interest rate with equal monthly payments of principal and interest. What is the incremental annual borrowing cost for the additional $4,000,000 loan amount if each loan would be outstanding for the full 30 year term? a.13.0% b.12.4% c.11.5% d. 7.0%arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,