If your car is stuck in the mud and you don't have a winch to pull it out, you can use a piece of rope and a tree to do the trick. First, you tie one end of the rope to your car and the other to a tree, then pull as hard as you can on the middle of the rope, as shown in Figure P4.68 a. This technique applies a force to the car much larger than the force that you can apply directly. To see why the car experiences such a large force, look at the forces acting on the center point of the rope, as shown in Figure P4.68 b. The sum of the forces is zero, thus the tension is much greater than the force you apply. It is this tension force that acts on the car and, with luck, pulls it free. Figure P4.68 69. When you are pulling on the rope as shown, what is the approximate direction of the tension force on the tree? A. North B. South C. East D. West
If your car is stuck in the mud and you don't have a winch to pull it out, you can use a piece of rope and a tree to do the trick. First, you tie one end of the rope to your car and the other to a tree, then pull as hard as you can on the middle of the rope, as shown in Figure P4.68 a. This technique applies a force to the car much larger than the force that you can apply directly. To see why the car experiences such a large force, look at the forces acting on the center point of the rope, as shown in Figure P4.68 b. The sum of the forces is zero, thus the tension is much greater than the force you apply. It is this tension force that acts on the car and, with luck, pulls it free. Figure P4.68 69. When you are pulling on the rope as shown, what is the approximate direction of the tension force on the tree? A. North B. South C. East D. West
If your car is stuck in the mud and you don't have a winch to pull it out, you can use a piece of rope and a tree to do the trick. First, you tie one end of the rope to your car and the other to a tree, then pull as hard as you can on the middle of the rope, as shown in Figure P4.68 a. This technique applies a force to the car much larger than the force that you can apply directly. To see why the car experiences such a large force, look at the forces acting on the center point of the rope, as shown in Figure P4.68 b. The sum of the forces is zero, thus the tension is much greater than the force you apply. It is this tension force that acts on the car and, with luck, pulls it free.
Figure P4.68
69. When you are pulling on the rope as shown, what is the approximate direction of the tension force on the tree?
1. What is the spring constant of a spring that starts 10.0 cm long and extends to 11.4 cm with a 300 g mass hanging from it?
please help me solve all parts of this question from physics. thanks so much in advance! :)))
A fluid with density 263 kg/m3 flows through a pipe of varying diameter and height. At location 1 the flow speed is 13.5 m/s and the diameter of the pipe is 7.4 cm down to location 2 the pipe diameter is 16.9 cm. Location 1 is 6.3 meters higher than location 2.
What is the difference in pressure P2 - P1?
Using units in Pascals and use g = 9.81 m/s2.
Chapter 4 Solutions
Student Workbook for College Physics: A Strategic Approach Volume 1 (Chs. 1-16)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.