COMPUTER SCIENCE ILLUMIN.-TEXT
COMPUTER SCIENCE ILLUMIN.-TEXT
6th Edition
ISBN: 2810016866372
Author: Dale
Publisher: JONES+BART
bartleby

Videos

Question
Book Icon
Chapter 4, Problem 61E
Program Plan Intro

Circuit:

  • The circuit is known as the combination of gates that is used to achieve a difficult logical operation.
  • It contains two general categories, they are:
    • Combinational circuit
    • Sequential circuit

Expert Solution & Answer
Check Mark

Explanation of Solution

Given circuit diagram:

COMPUTER SCIENCE ILLUMIN.-TEXT, Chapter 4, Problem 61E

Behavior of the circuit:

  • From the circuit diagram:
    • First, the input A is passed to NOT gate to perform the inverse of A and produces the output as A¯.
    • Next, the inputs B and C are passed into XOR gate to perform the XOR operation of the B and C to produce the output as BC.
      • Note: XOR operation - when both the inputs are the same, then the output of XOR gate is 0. Otherwise, the output of XOR gate is 1.
    • Finally, the output of NOT gate and output of XOR gate is passed as the input of AND gate.
      • That is, “A¯” and “BC” are passed as input for AND gate and produces the output A¯(BC).

Truth table:

Step 1:

  • The inputs are A, B, and C for the above circuit diagram:
ABCA¯BCA¯(BC)
000   
001   
010   
011   
100   
101   
110   
111   

Step 2:

  • When the inputs are A as 0, B as 0, and C as 0:
ABCA¯BCA¯(BC)
000100
001   
010   
011   
100   
101   
110   
111   
  • First, the input A as 0 is passed to NOT gate to perform the inverse of the A and produces the output as  0 ¯=1.
  • Next, the inputs B as 0 and C as 0 are passed in the XOR gate to perform the XOR operation of 0 and 0, to produce the output as 00 = 0.
    • Note: XOR operation: when both the inputs are the same, the output of XOR gate is 0. Otherwise, the output of XOR gate is 1.
  • Finally, the output of NOT gate and output of XOR gate are passed as the input of AND gate.
    • That is, “1” and “0” are passed as input to AND gate and produces the output 10 = 0.

Step 3:

  • When the inputs are A as 0, B as 0, and C as 1:
ABCA¯BCA¯(BC)
000100
001111
010   
011   
100   
101   
110   
111   
  • First, the input A as 0 is passed to NOT gate to perform the inverse of the A and produces the output as  0 ¯=1.
  • Next, the inputs B as 0 and C as 1 are passed in the XOR gate to perform the XOR operation of 0 and 1, to produce the output as 01 = 1.
    • Note: XOR operation - when both the inputs are same, the output of XOR gate is 0. Otherwise, output of XOR gate will be 1.
  • Finally, the output of NOT gate and output of XOR gate are passed as the input of AND gate.
    • That is, “1” and “1” are passed as input to AND gate and produces the output 11 = 1.

Step 4:

  • When the inputs are A as 0, B as 1, and C as 0:
ABCA¯BCA¯(BC)
000100
001111
010111
011   
100   
101   
110   
111   
  • First, the input A as 0 is passed to NOT gate to perform the inverse of A and produces the output as  0 ¯=1.
  • Next, the inputs B as 1 and C as 0 are passed in the XOR gate to perform the XOR operation of the 1 and 0, to produce the output as 10 = 1.
    • Note: XOR operation - when both the inputs are same, the output of XOR gate is 0. Otherwise, the output of XOR gate is 1.
  • Finally, the output of NOT gate and output of XOR gate are passed as the input of AND gate.
    • That is, “1” and “1” are passed as input for AND gate and produces the output 11 = 1.

Step 5:

  • When the inputs are A as 0, B as 1, and C as 1:
ABCA¯BCA¯(BC)
000100
001111
010111
011100
100   
101   
110   
111   
  • First, the input A as 0 is passed to NOT gate to perform the inverse of the A and produces the output as  0 ¯=1.
  • Next, the inputs B as 1 and C as 1 are passed in the XOR gate to perform the XOR operation of the 1 and 1, to produce the output as 11 = 0.
    • Note: XOR operation - when both the inputs are same, the output of XOR gate is 0. Otherwise, the output of XOR gate is 1.
  • Finally, the output of NOT gate and output of XOR gate are passed as the input of AND gate.
    • That is, “1” and “0” are passed as input for AND gate and produces the output 10 = 0.

Step 6:

  • When the inputs are A as 1, B as 0, and C as 0:
ABCA¯BCA¯(BC)
000100
001111
010111
011100
100000
101   
110   
111   
  • First, the input A as 1 is passed to NOT gate to perform the inverse of the A and produces the output as  1 ¯=0.
  • Next, the inputs B as 0 and C as 0 are passed in the XOR gate to perform the XOR operation of the 0 and 0, to produce the output as 00 = 0.
    • Note: XOR operation - when both the inputs are same, the output of XOR gate is 0. Otherwise, the output of XOR gate is 1.
  • Finally, the output of NOT gate and output of XOR gate are passed as the input of AND gate.
    • That is, “0” and “0” are passed as input for AND gate and produces the output 00 = 0.

Step 7:

  • When the inputs are A as 1, B as 0, and C as 1:
ABCA¯BCA¯(BC)
000100
001111
010111
011100
100000
101010
110   
111   
  • First, the input A as 1 is passed to NOT gate to perform the inverse of the A and produces the output as  1 ¯=0.
  • Next, the inputs B as 0 and C as 1 are passed in the XOR gate to perform the XOR operation of the 0 and 0, to produce the output as 01 = 1.
    • Note: XOR operation - when both the inputs are same, the output of XOR gate is 0. Otherwise, the output of XOR gate is 1.
  • Finally, the output of NOT gate and output of XOR gate are passed as the input of AND gate.
    • That is, “0” and “1” are passed as input for AND gate and produces the output 01 = 0.

Step 8:

  • When the inputs are A as 1, B as 1, and C as 0:
ABCA¯BCA¯(BC)
000100
001111
010111
011100
100000
101010
110010
111   
  • First, the input A as 1 is passed to NOT gate to perform the inverse of the A and produces the output as  1 ¯=0.
  • Next, the inputs B as 1 and C as 0 are passed in the XOR gate to perform the XOR operation of the 0 and 0, to produce the output as 10 = 1.
    • Note: XOR operation - when both the inputs are same, the output of XOR gate is 0. Otherwise, the output of XOR gate is 1.
  • Finally, the output of NOT gate and output of XOR gate are passed as the input of AND gate.
    • That is, “0” and “1” are passed as input to AND gate and produces the output 01 = 0.

Step 9:

  • When the inputs are A as 1, B as 1, and C as 1:
ABCA¯BCA¯(BC)
000100
001111
010111
011100
100000
101010
110010
111000
  • First, the input A as 1 is passed to NOT gate to perform the inverse of the A and produces the output as  1 ¯=0.
  • Next, the inputs B as 1 and C as 1 are passed in the XOR gate to perform the XOR operation of the 0 and 0, to produce the output as 11 = 0.
    • Note: XOR operation - when both the inputs are same, the output of XOR gate is 0. Otherwise, the output of XOR gate is 1.
  • Finally, the output of NOT gate and output of XOR gate are passed as the input of AND gate.
    • That is, “0” and “0” are passed as input for AND gate and produces the output 00 = 0.

Therefore, Truth table for the given circuit is:

ABCA¯BCA¯(BC)
000100
001111
010111
011100
100000
101010
110010
111000

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
make corrections of this program based on the errors shown. this is CIS 227 .
Create 6 users: Don, Liz, Shamir, Jose, Kate, and Sal. Create 2 groups: marketing and research. Add Shamir, Jose, and Kate to the marketing group. Add Don, Liz, and Sal to the research group. Create a shared directory for each group. Create two files to put into each directory: spreadsheetJanuary.txt meetingNotes.txt Assign access permissions to the directories:  Groups should have Read+Write access Leave owner permissions as they are  “Everyone else” should not have any access   Submit for grade: Screenshot of  /etc/passwd contents showing your new users Screenshot of /etc/group contents showing new groups with their members Screenshot of shared directories you created with files and permissions
⚫ your circuit diagrams for your basic bricks, such as AND, OR, XOR gates and 1 bit multiplexers, ⚫ your circuit diagrams for your extended full adder, designed in Section 1 and ⚫ your circuit diagrams for your 8-bit arithmetical-logical unit, designed in Section 2. 1 An Extended Full Adder In this Section, we are going to design an extended full adder circuit (EFA). That EFA takes 6 one bit inputs: aj, bj, Cin, Tin, t₁ and to. Depending on the four possible combinations of values on t₁ and to, the EFA produces 3 one bit outputs: sj, Cout and rout. The EFA can be specified in principle by a truth table with 26 = 64 entries and 3 outputs. However, as the EFA ignores certain inputs in certain cases, it is easier to work with the following overview specification, depending only on t₁ and to in the first place: t₁ to Description 00 Output Relationship Ignored Inputs Addition Mode 2 Coutsjaj + bj + Cin, Tout= 0 Tin 0 1 Shift Left Mode Sj = Cin, Cout=bj, rout = 0 rin, aj 10 1 1 Shift Right…
Knowledge Booster
Background pattern image
Computer Science
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Text book image
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Text book image
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
Text book image
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Text book image
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Boolean Algebra - Digital Logic and Logic Families - Industrial Electronics; Author: Ekeeda;https://www.youtube.com/watch?v=u7XnJos-_Hs;License: Standard YouTube License, CC-BY
Boolean Algebra 1 – The Laws of Boolean Algebra; Author: Computer Science;https://www.youtube.com/watch?v=EPJf4owqwdA;License: Standard Youtube License