Carefully read through the list of terminology we’ve used in Unit 4. Consider circling the terms you aren’t familiar with and looking them up. Then test your understanding by using the list to fill in the appropriate blank in each sentence. d = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 x = − b ± b 2 − 4 a c 2 a x = − b 2 a arbitrary binomial coefficient conjecture counterexample deductive reasoning equivalent expanded form exponential decay exponential function exponential growth f(x) factored form factoring factors function growth factor hypotenuse inductive reasoning inverse variation isosceles margin of error parabola parameters perfect squares polynomial prime polynomial profit quadratic function revenue right triangle standard form symmetry terms trinomial vertex zero A _______________ is an example that proves your conjecture was false.
Carefully read through the list of terminology we’ve used in Unit 4. Consider circling the terms you aren’t familiar with and looking them up. Then test your understanding by using the list to fill in the appropriate blank in each sentence. d = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 x = − b ± b 2 − 4 a c 2 a x = − b 2 a arbitrary binomial coefficient conjecture counterexample deductive reasoning equivalent expanded form exponential decay exponential function exponential growth f(x) factored form factoring factors function growth factor hypotenuse inductive reasoning inverse variation isosceles margin of error parabola parameters perfect squares polynomial prime polynomial profit quadratic function revenue right triangle standard form symmetry terms trinomial vertex zero A _______________ is an example that proves your conjecture was false.
Solution Summary: The author explains that a counter example is an example that proves your conjecture was false.
Carefully read through the list of terminology we’ve used in Unit 4. Consider circling the terms you aren’t familiar with and looking them up. Then test your understanding by using the list to fill in the appropriate blank in each sentence.
d
=
(
x
2
−
x
1
)
2
+
(
y
2
−
y
1
)
2
x
=
−
b
±
b
2
−
4
a
c
2
a
x
=
−
b
2
a
arbitrary
binomial
coefficient
conjecture
counterexample
deductive reasoning
equivalent
expanded form
exponential decay
exponential function
exponential growth
f(x)
factored form
factoring
factors
function
growth factor
hypotenuse
inductive reasoning
inverse variation
isosceles
margin of error
parabola
parameters
perfect squares
polynomial
prime polynomial
profit
quadratic function
revenue
right triangle
standard form
symmetry
terms
trinomial
vertex
zero
A _______________ is an example that proves your conjecture was false.
Proof: LN⎯⎯⎯⎯⎯LN¯ divides quadrilateral KLMN into two triangles. The sum of the angle measures in each triangle is ˚, so the sum of the angle measures for both triangles is ˚. So, m∠K+m∠L+m∠M+m∠N=m∠K+m∠L+m∠M+m∠N=˚. Because ∠K≅∠M∠K≅∠M and ∠N≅∠L, m∠K=m∠M∠N≅∠L, m∠K=m∠M and m∠N=m∠Lm∠N=m∠L by the definition of congruence. By the Substitution Property of Equality, m∠K+m∠L+m∠K+m∠L=m∠K+m∠L+m∠K+m∠L=°,°, so (m∠K)+ m∠K+ (m∠L)= m∠L= ˚. Dividing each side by gives m∠K+m∠L=m∠K+m∠L= °.°. The consecutive angles are supplementary, so KN⎯⎯⎯⎯⎯⎯∥LM⎯⎯⎯⎯⎯⎯KN¯∥LM¯ by the Converse of the Consecutive Interior Angles Theorem. Likewise, (m∠K)+m∠K+ (m∠N)=m∠N= ˚, or m∠K+m∠N=m∠K+m∠N= ˚. So these consecutive angles are supplementary and KL⎯⎯⎯⎯⎯∥NM⎯⎯⎯⎯⎯⎯KL¯∥NM¯ by the Converse of the Consecutive Interior Angles Theorem. Opposite sides are parallel, so quadrilateral KLMN is a parallelogram.
By considering appropriate series expansions,
ex · ex²/2 . ¸²³/³ . . ..
=
= 1 + x + x² +……
when |x| < 1.
By expanding each individual exponential term on the left-hand side
and multiplying out, show that the coefficient of x 19 has the form
1/19!+1/19+r/s,
where 19 does not divide s.
Let
1
1
r
1+
+ +
2 3
+
=
823
823s
Without calculating the left-hand side, prove that r = s (mod 823³).
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Linear Equation | Solving Linear Equations | What is Linear Equation in one variable ?; Author: Najam Academy;https://www.youtube.com/watch?v=tHm3X_Ta_iE;License: Standard YouTube License, CC-BY