COSMIC PERSPECTIVE
9th Edition
ISBN: 9780135729458
Author: Bennett
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 58EAP
Escape Velocity. Calculate the escape velocity from each of the following, using data as needed from Appendix E.
- The surface of Mars
- The surface of Mars’s moon Phobos
- The surface (cloud tops) of Jupiter
- Our solar system, starting from Earth’s orbit (Hint: The mass of our solar system is approximately the same as the mass of the Sun.)
- Our solar system, starting from Saturn’s orbit
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Part B.
1. The table below shows the gravitational force between Saturn and some ring
particles that are at different distance from the planet. All of the particles have a
mass of 1 kg.
Table 1. Distance and Gravitational
Force Data
Distance of 1- Gravitational
kg Ring
Particle from
Force between
Saturn and 1-kg
ring particle (in
| 10,000 N)
2. Use the data in the table to make a
graph of the relationship between
distance and gravitational force. Label
your graph "Gravitational Force and
distance".
Center of
Saturn (in
| 1,000 km)
100
38
Hint: Put the data for distance on the
horizontal axis and the data for
gravitational force on the vertical axis.
120
26
130
22
150
17
3. Look at your graphed data, and
record in your answering sheet any
relationship you notice.
180
12
200
9.
220
8
250
280
O 5
The close encounter hypothesis was rejected because of the following reasons except for this reason.
b. It explained the planets were formed by gravitational disruption
c. It failed to explain the orbital motions of planets
d. It failed to explain why the solar system have 2 types of planets: terrestrial and jovian
on Mars:
Before leaving the surface of the planet aboard the shuttle, it is useful for astronauts to estimate the escape velocity.
What does escape velocity mean?
Calculate the escape velocity for the shuttle (mass of 6500 kg). Show your steps.
Chapter 4 Solutions
COSMIC PERSPECTIVE
Ch. 4 - Prob. 1VSCCh. 4 - Use the following questions to check your...Ch. 4 - Use the following questions to check your...Ch. 4 - Use the following questions to check your...Ch. 4 - Use the following questions to check your...Ch. 4 - Define speed, velocity, and acceleration. What are...Ch. 4 - Define momentum and force. What do we mean when we...Ch. 4 - What is free-fall, and why does it make you...Ch. 4 - Prob. 4EAPCh. 4 - Describe the laws of conservation of momentum, of...
Ch. 4 - Define kinetic energy, radiative energy, and...Ch. 4 - Define temperature and thermal energy. How are...Ch. 4 - Prob. 8EAPCh. 4 - 9. Summarize the universal law of gravitation both...Ch. 4 - 10. What is the difference between a bound and an...Ch. 4 - What do we need to know if we want to measure an...Ch. 4 - Explain why orbits cannot change spontaneously,...Ch. 4 - Explain how the Moon creates tides on Earth. Why...Ch. 4 - What is tidal friction? What effects does it have...Ch. 4 - Does It Make Sense?
Decide whether the statement...Ch. 4 - Does It Make Sense?
Decide whether the statement...Ch. 4 - Does It Make Sense?
Decide whether the statement...Ch. 4 - Does It Make Sense?
Decide whether the statement...Ch. 4 - Prob. 19EAPCh. 4 - Prob. 20EAPCh. 4 - Does It Make Sense? Decide whether the statement...Ch. 4 - Does It Make Sense?
Decide whether the statement...Ch. 4 - Does It Make Sense?
Decide whether the statement...Ch. 4 - Does It Make Sense?
Decide whether the statement...Ch. 4 - Choose the best answer to each of the following....Ch. 4 - Choose the best answer to each of the following....Ch. 4 - Choose the best answer to each of the following....Ch. 4 - Choose the best answer to each of the following....Ch. 4 - Choose the best answer to each of the following....Ch. 4 - Prob. 30EAPCh. 4 - Prob. 31EAPCh. 4 - Choose the best answer to each of the following....Ch. 4 - Choose the best answer to each of the following....Ch. 4 - Choose the best answer to each of the following....Ch. 4 - Prob. 35EAPCh. 4 - Testing Gravity. Scientists are continually trying...Ch. 4 - Prob. 38EAPCh. 4 - Prob. 39EAPCh. 4 - Prob. 40EAPCh. 4 - Weightlessness. Astronauts are weightless when in...Ch. 4 - Units of Acceleration. If you drop a rock from a...Ch. 4 - Gravitational Potential Energy. For each of the...Ch. 4 - Prob. 44EAPCh. 4 - The Gravitational Law. How does quadrupling the...Ch. 4 - Allowable Orbits? Suppose the Sun were replaced by...Ch. 4 - Head-to-Foot Tides. You and Earth attract each...Ch. 4 - Prob. 48EAPCh. 4 - Geostationary Orbit. A satellite in geostationary...Ch. 4 - Prob. 51EAPCh. 4 - Prob. 52EAPCh. 4 - Moving Candy Bar. Table 4.1 shows that...Ch. 4 - Spontaneous Human Combustion. Suppose that all the...Ch. 4 - Fusion Power. No one has yet succeeded in creating...Ch. 4 - Understanding Newton’s Version of Kepler’s Third...Ch. 4 - Using Newton’s Version of Kepler’s Third Law....Ch. 4 - Escape Velocity. Calculate the escape velocity...Ch. 4 - Weights on Other Worlds. Calculate the...Ch. 4 - Prob. 60EAPCh. 4 - Extra Moon. Suppose Earth had a second moon,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Using Appendix G, complete the following table that describes the characteristics of the Galilean moons of Jupiter, starting from Jupiter and moving outward in distance. Table A This system has often been described as a mini solar system. Why might this be so? If Jupiter were to represent the Sun and the Galilean moons represented planets, which moons could be considered more terrestrial in nature and which ones more like gas/ice giants? Why? (Hint: Use the values in your table to help explain your categorization.)arrow_forwardWhat is the escape velocity from the Sun? How much greater is it than the escape velocity from Earth?arrow_forwardSince 1995, hundreds of extrasolar planets have been discovered. There is the exciting possibility that there is life on one or more of these planets. To support life similar to that on the Earth, the planet must have liquid water. For an Earth-like planet orbiting a star like the Sun, this requirement means that the planet must be within a habitable zone of 0.9 AU to 1.4 AU from the star. The semimajor axis of an extrasolar planet is inferred from its period. What range in periods corresponds to the habitable zone for an Earth-like Planet orbiting a Sun-like star?arrow_forward
- Which of the following statements accurately describes our current understanding of the solar system? a. There are no metals in the solar system beyond Jupiter and its orbit. b. Terrestrial worlds are so small because their large atmospheres were stripped away in time by Jupiter. c. Jupiter and Saturn are made of strictly a combination of hydrogen and helium, and both objects lack a planetary core. d. Various ices can contribute to the mass of planetary cores if we are at a great enough distance from the sun.arrow_forward2GM The asteroid Pallas has a mass of 2.11 x 1020 kg and an average radius of about 256 km (2.56 x 102 km). What is its escape velocity (in m/s)? (Hints: Use the formula for escape velocity, V. = remember to convert units to m, kg, and s.) m/s Could you jump off the asteroid? O Yes O Noarrow_forwardThe gravity on Mars is about 38% that of Earth's gravity. Let's say some cargo has a mass of 15 kg here on Earth. First, what would be the weight of that cargo in kilograms on Mars? Explain your answer. Second, what would be the mass of that cargo in kilograms on Mars? Explain your answer.arrow_forward
- Q7arrow_forwardUntil recently, the term "planet" had no clear-cut definition. In August of 2006, leading astronomers established new guidelines and declared that Pluto is no longer a planet. Which of the following is either false or least consistent with the new guidelines? Group of answer choices Pluto is by far the largest known object in the Kuiper belt, while Eris is the largest known object in the asteroid belt. A planet must have cleared the neighborhood around its orbit. Pluto is automatically disqualified from being a planet because its oblong orbit overlaps with Neptune's. A planet must have sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a nearly round shape. Pluto and the asteroid Ceres are both now classified as dwarf planets.arrow_forwardB2arrow_forward
- After reducing the Planet Mass to 0.5, we observe the subsequent motions. How are the orbits of the Earth and Moon affected? Summarize observations and explain why. A website for the simulation shown in the image: https://phet.colorado.edu/sims/html/gravity-and-orbits/latest/gravity-and-orbits_en.htmlarrow_forward1.The Curiosity Rover has recently landed on Mars and likes to send Twitter updates on its progress. If a tweet is posted 13 minutes after it was sent, how far is Curiosity from Earth? (Assume there is no network lag.)______________ m 2.You've entered the Great Space Race. Your engines are hearty enough to keep you in second place. While racing, the person in front of you begins to have engine troubles and turns on his emergency lights that emit at a frequency of 5.720 1014 Hz. If the person in front of you is traveling 2692 km/s faster than you when he turns on his lights, what is the frequency of the emergency lights that you observe when it reaches you in your spaceship? (Enter your answer to four significant figures.) ___________Hzarrow_forwardWhat happens to the mass equilibrium when you move to Jupiter? To the moon? Explain why this happens. meaning that Jupiter will have greater gravity and the moon will have lower gravity and why does it happenarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY