(a)
Interpretation:
To determine the chemical symbol,
Concept Introduction:
Periodic table is arrangement of different elements with the help of columns and rows in order to characterize elements with similar properties in same groups such as alkali metals, alkaline earth metals, halides, noble gases,
Element:
An element is a simplest type of a pure substance which is composed of only one type of matter. For examples; silver, gold platinum etc.
Metal:
Metals are hard, shiny, malleable, fusible, and ductile. They are good conductor of heat and electricity. They are located to the left of the periodic table.
Metalloid:
Metalloids have properties of both metals and non-metals. They are in the middle of the periodic table.
Non-metal:
A non-metal has no lustre, with poor electrical and thermal conductivity. They are in right side of the periodic table
Valence electron: The electrons which are present in the outer most energy level is known as valence electron. Number of valence electrons can be calculated by the group number of the element. Generally, the group number is same as the valance electrons of any elements.
Answer to Problem 53QAP
The chemical symbol of strontium is
Explanation of Solution
The atomic symbol notation is as follows:
Here A = mass number which is equal to the total number of protons + number of neutrons, Z = atomic number of any element which is also indicates Number of protons or number of electrons in the given atom.
The elements of this group 2 or 2A are also known as alkaline earth metals. The elements of this group are following:
Therefore, according to periodic table, the atomic symbol for strontium is
(b)
Interpretation:
To determine the chemical symbol, atomic number and group number of iodine and to specify if it is metal, non-metal or metalloid.
Concept Introduction:
Periodic table is arrangement of different elements with the help of columns and rows in order to characterize elements with similar properties in same groups such as alkali metals, alkaline earth metals, halides, noble gases, transition elements etc. In the periodic table, columns represent groups and rows represents periods.
Element:
An element is a simplest type of a pure substance which is composed of only one type of matter. For examples; silver, gold platinum etc.
Metal:
Metals are hard, shiny, malleable, fusible, and ductile. They are good conductor of heat and electricity. They are located to the left of the periodic table.
Metalloid:
Metalloids have properties of both metals and non-metals. They are in the middle of the periodic table.
Non-metal:
A non-metal has no lustre, with poor electrical and thermal conductivity. They are in right side of the periodic table
Valence electron: The electrons which are present in the outer most energy level is known as valence electron. Number of valence electrons can be calculated by the group number of the element. Generally, the group number is same as the valance electrons of any elements.
Answer to Problem 53QAP
The chemical symbol of iodine is
Explanation of Solution
The atomic symbol notation is as follows:
Here A = mass number which is equal to the total number of protons + number of neutrons, Z = atomic number of any element which is also indicates Number of protons or number of electrons in the given atom.
The elements of group 17 or17 A are also known as the halogens. The elements of this group are following:
Thus, chemical symbol for iodine is
(c)
Interpretation:
To determine the chemical symbol, atomic number and group number of silicon and to specify if it is metal, non-metal or metalloid.
Concept Introduction:
Periodic table is arrangement of different elements with the help of columns and rows in order to characterize elements with similar properties in same groups such as alkali metals, alkaline earth metals, halides, noble gases, transition elements etc. In the periodic table, columns represent groups and rows represents periods.
Element:
An element is a simplest type of a pure substance which is composed of only one type of matter. For examples; silver, gold platinum etc.
Metal:
Metals are hard, shiny, malleable, fusible, and ductile. They are good conductor of heat and electricity. They are located to the left of the periodic table.
Metalloid:
Metalloids have properties of both metals and non-metals. They are in the middle of the periodic table.
Non-metal:
A non-metal has no lustre, with poor electrical and thermal conductivity. They are in right side of the periodic table
Valence electron: The electrons which are present in the outer most energy level is known as valence electron. Number of valence electrons can be calculated by the group number of the element. Generally, the group number is same as the valance electrons of any elements.
Answer to Problem 53QAP
The chemical symbol of silicon is
Explanation of Solution
The atomic symbol notation is as follows:
Here A = mass number which is equal to the total number of protons + number of neutrons, Z = atomic number of any element which is also indicates Number of protons or number of electron in the given atom.
The elements of this group 14 are also known as carbon family. The elements of this group are following:
Thus, atomic symbol for silicon is
(d)
Interpretation:
To determine the chemical symbol, atomic number and group number of caesium and to specify if it is metal, non-metal or metalloid.
Concept Introduction:
Periodic table is arrangement of different elements with the help of columns and rows in order to characterize elements with similar properties in same groups such as alkali metals, alkaline earth metals, halides, noble gases, transition elements etc. In the periodic table, columns represent groups and rows represents periods.
Element:
An element is a simplest type of a pure substance which is composed of only one type of matter. For examples; silver, gold platinum etc.
Metal:
Metals are hard, shiny, malleable, fusible, and ductile. They are good conductor of heat and electricity. They are located to the left of the periodic table.
Metalloid:
Metalloids have properties of both metals and non-metals. They are in the middle of the periodic table.
Non-metal:
A non-metal has no lustre, with poor electrical and thermal conductivity. They are in right side of the periodic table
Valence electron: The electrons which are present in the outer most energy level is known as valence electron. Number of valence electrons can be calculated by the group number of the element. Generally, the group number is same as the valance electrons of any elements.
Answer to Problem 53QAP
The chemical symbol of caesium is
Explanation of Solution
The atomic symbol notation is as follows:
Here A = mass number which is equal to the total number of protons + number of neutrons, Z = atomic number of any element which is also indicates Number of protons or number of electrons in the given atom.
The elements of this group 1 or IA are also known as alkali metals. The elements of this group are following:
Therefore, the atomic symbol for caesium is
(e)
Interpretation:
To determine the chemical symbol, atomic number and group number of sulphur and to specify if it is metal, non-metal or metalloid.
Concept Introduction:
Periodic table is arrangement of different elements with the help of columns and rows in order to characterize elements with similar properties in same groups such as alkali metals, alkaline earth metals, halides, noble gases, transition elements etc. In the periodic table, columns represent groups and rows represents periods.
Element:
An element is a simplest type of a pure substance which is composed of only one type of matter. For examples; silver, gold platinum etc.
Metal:
Metals are hard, shiny, malleable, fusible, and ductile. They are good conductor of heat and electricity. They are located to the left of the periodic table.
Metalloid:
Metalloids have properties of both metals and non-metals. They are in the middle of the periodic table.
Non-metal:
A non-metal has no lustre, with poor electrical and thermal conductivity. They are in right side of the periodic table
Valence electron: The electrons which are present in the outer most energy level is known as valence electron. Number of valence electrons can be calculated by the group number of the element. Generally, the group number is same as the valance electrons of any elements.
Answer to Problem 53QAP
The chemical symbol of sulphur is
Explanation of Solution
The atomic symbol notation is as follows:
Here A = mass number which is equal to the total number of protons + number of neutrons, Z = atomic number of any element which is also indicates Number of protons or number of electrons in the given atom.
The elements of this group 16 are also known as oxygen family. The elements of this group are following:
Thus, the atomic symbol for sulphur is
Want to see more full solutions like this?
Chapter 4 Solutions
EBK INTRO.CHEMISTRY (NASTA EDITION)
- The element europium exists in nature as two isotopes: 151Eu has a mass of 150.9196 u and 153Eu has a mass of 152.9209 u. The average atomic mass of europium is 151.96 u. Calculate the relative abundance of the two europium isotopes.arrow_forwardThese questions concern the work of J. J. Thomson: From Thomson’s work, which particles do you think he would feel are most important in the formation of compounds (chemical changes) and why? Of the remaining two subatomic particles, which do you place second in importance for forming compounds and why? Come up with three models that explain Thomson’s findings and evaluate them. To be complete you should include Thomson’s findings.arrow_forwardAn isotope of an element contains 63 protons and 91 neutrons. (a) Identify the element and give its symbol. (b) Give the elements atomic number. (c) Give the mass number of the isotope. (d) This element has two naturally occurring isotopes. Given the information in the table, calculate the atomic weight of the element. (e) In which region of the periodic table is the element found? Explain your answer. (f) Is the element a metal, metalloid, or nonmetal? Explain your answer. (g) This element, used in compact fluorescent light bulbs and computer screens, has an atomic radius of 180 pm. Calculate how long the chain of atoms would be if all the atoms in a 1.25-mg sample of this element were put into a row.arrow_forward
- The average atomic masses of some elements may vary, depending upon the sources of their ores. Naturally occurring boron consists of two isotopes with accurately known masses ( 10B, 10.0129 amu and 11B, 11.0931 amu). The actual atomic mass of boron can vary from 10.807 to 10.8 19, depending on whether the mineral source is from Turkey or the United States. Calculate the percent abundances leading to the two values of the average atomic masses of boron from these two countries.arrow_forwardScientists J. J. Thomson and William Thomson (Lord Kelvin) made numerous contributions to our understanding of the atom’s structure. Which subatomic particle did J. J. Thomson discover, and what did this lead him to postulate about the nature of the atom? William Thomson postulated what became known as the “plum pudding” model of the atom’s structure. What did this model suggest?arrow_forwardIn the following drawing, the green spheres represent atoms of a certain element. The purple spheres represent atoms of another element. If the spheres of different elements touch, they are part of a single unit of a compound. The following chemical change represented by these spheres may violate one of the ideas of Dalton’s atomic theory. Which one?arrow_forward
- Each of the following statements is true, but Dalton might have had trouble explaining some of them with his atomic theory. Give explanations for the following statements. a. The space-filling models for ethyl alcohol and dimethyl ether are shown below. These two compounds have die same composition by mass (52% carbon, 13% hydrogen, and 35% oxygen), yet the two have different melting points, boiling points, and solubilities in water. b. Burning wood leaves an ash that is only a small fraction of the mass of the original wood. c. Atoms can be broken down into smaller particles. d. One sample of lithium hydride is 87.4% lithium by mass, while another sample of lithium hydride Ls 74.9% lithium by mass. However, the two samples have the same chemical properties.arrow_forwardGive three examples of gaseous elements that exist as diatomic molecules. Give three examples of gaseous elements that exist as monatomic species.arrow_forwardConstant Composition of Compounds Two samples of sugar are decomposed into their constituent elements. One sample of sugar produces 18.0 g carbon, 3.0 g hydrogen, and 24.0 g oxygen; the other sample produces 24.0 g carbon, 4.0 g hydrogen, and 32.0 g oxygen. Find the ratio of carbon to hydrogen and the ratio of oxygen to hydrogen for each of the samples, and show they are consistent with the law of constant composition.arrow_forward
- Cobalt has three radioactive isotopes used in medical studies. Atoms of these isotopes have 30, 31, and 33 neutrons, respectively. Give the complete symbol for each of these isotopes.arrow_forwardIn 1886 Eugene Goldstein observed positively charged particles moving in the opposite direction to electrons in a cathode ray tube (illustrated below). From their mass, he concluded that these particles were formed from residual gas in the tube. For example, if the cathode ray tube contained helium, the canal rays consisted of He+ ions. Describe a process that could lead to these ions. Canal rays. In 1886, Eugene Goldstein detected a stream of particles traveling in the direction opposite to that of the negatively charged cathode rays (electrons). He called this stream of positive particles "canal rays:"arrow_forwardIn Section 1.1 of the text, the concept of a chemical reaction was introduced with the example of the decomposition of water, represented as follows: Use ideas from Dalton's atomic theory to explain how the above representation illustrates the law of conservation of mass.arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning