(a)
Interpretation:
The given reaction of Salicylic acid with acetic acid for the formation of aspirin has to be balanced.
Concept Introduction:
Balancing the equation:
- There is a Law for conversion of mass in a
chemical reaction i.e., the mass of total amount of the product should be equal to the total mass of the reactants. - First write the skeletal reaction from the given information.
- Then count the number of atoms of each element in reactants as well as products.
- Place suitable coefficients in front of reactants as well as products until the number of atoms on each side (reactants and products) becomes equal.
(a)

Explanation of Solution
Given reaction equation:
Balancing the chemical Equation:
Count the number of atoms on each side of the reaction.
Atom | Reactant side | Product side |
9 | 9 | |
10 | 10 | |
5 | 5 |
Yes, the number of atoms present on each side of the reaction is same. Hence, the given equation is already balanced.
(b)
Interpretation:
For the given reaction, the number of moles of aspirin that would form from
(b)

Explanation of Solution
Given reaction equation:
From the balanced equation, it is known that one mole of salicylic acid forms one mole of aspirin as product. That is,
For the given moles of salicylic acid, the number of moles of aspirin formed is,
Therefore, the number of moles of aspirin produced from given moles of salicylic acid is
(c)
Interpretation:
For the given reaction, the amout (in
Concept Introduction:
Moles:
Mole of the substance is found by dividing the mass of the substance by its molar mass.
Mass:
Mass of the compound is calculated by mole of the compound multiplied with molar mass of the compound.
(c)

Explanation of Solution
Given reaction equation:
From the balanced equation, it is known that one mole of salicylic acid forms one mole of aspirin as product. That is,
For the given moles of salicylic acid, the number of moles of aspirin formed is,
Thus, the number of moles of aspirin produced from given moles of salicylic acid is
The molar mass of aspirin is
Determine the mass of aspirin formed as follows,
Therefore, the amount of aspirin produced from given moles of salicylic acid is
(d)
Interpretation:
For the given reaction, the amout (in
Concept Introduction:
Refer part (c)
(d)

Explanation of Solution
Given reaction equation:
From the balanced equation, it is known that one mole of salicylic acid and one mole of acetic acid forms one mole of aspirin as product. That is,
From the moles of salicylic acid, the moles of acetic acid required is calculated as follows,
Thus, the number of moles of acetic acid that reacts with given moles of salicylic acid is
The molar mass of acetic acid is
Determine the mass of acetic acid required to react is found as follows,
Therefore, the amount of acetic acid required to react with given moles of salicylic acid is
(e)
Interpretation:
The amount (in
Concept Introduction:
Refer part (c)
(e)

Explanation of Solution
Given reaction equation:
The amount of acetic acid required to react with given moles of salicylic acid is
The molar mass of acetic acid is
Determine the moles of acetic acid as follows,
Thus, the moles of acetic acid is
From the balanced equation, it is known that one mole of salicylic acid and one mole of acetic acid forms one mole of aspirin as product. That is,
From the moles of acetic acid, the moles of aspirin formed is calculated as follows,
Thus, the moles of aspirin is
The molar mass of aspirin is
Determine the mass of aspirin formed as follows,
Therefore, the amount of aspirin produced from given moles of salicylic acid is
Want to see more full solutions like this?
Chapter 4 Solutions
GENERAL,ORGANIC+BIOCHEM (LOOSELEAF)
- Draw the molecules.arrow_forwardDraw the mechanism for the acid-catalyzed dehydration of 2-methyl-hexan-2-ol with arrows please.arrow_forward. Draw the products for addition reactions (label as major or minor) of the reaction between 2-methyl-2-butene and with following reactants : Steps to follow : A. These are addition reactions you need to break a double bond and make two products if possible. B. As of Markovnikov rule the hydrogen should go to that double bond carbon which has more hydrogen to make stable products or major product. Here is the link for additional help : https://study.com/academy/answer/predict-the-major-and-minor-products-of-2-methyl- 2-butene-with-hbr-as-an-electrophilic-addition-reaction-include-the-intermediate- reactions.html H₂C CH3 H H3C CH3 2-methyl-2-butene CH3 Same structure CH3 IENCESarrow_forward
- Draw everything on a piece of paper including every single step and each name provided using carbons less than 3 please.arrow_forwardTopics] [References] Write an acceptable IUPAC name for the compound below. (Only systematic names, not common names are accepted by this question.) Keep the information page open for feedback reference. H The IUPAC name isarrow_forward[Review Topics] [References] Write an acceptable IUPAC name for the compound below. (Only systematic names, not common names are accepted by this question.) Keep the information page open for feedback reference. The IUPAC name is Submit Answer Retry Entire Group 9 more group attempts remainingarrow_forward
- Please draw.arrow_forwardA chromatogram with ideal Gaussian bands has tR = 9.0 minutes and w1/2 = 2.0 minutes. Find the number of theoretical plates that are present, and calculate the height of each theoretical plate if the column is 10 centimeters long.arrow_forwardAn open tubular column has an inner diameter of 207 micrometers, and the thickness of the stationary phase on the inner wall is 0.50 micrometers. Unretained solute passes through in 63 seconds and a particular solute emerges at 433 seconds. Find the distribution constant for this solute and find the fraction of time spent in the stationary phase.arrow_forward
- Consider a chromatography column in which Vs= Vm/5. Find the retention factor if Kd= 3 and Kd= 30.arrow_forwardTo improve chromatographic separation, you must: Increase the number of theoretical plates on the column. Increase the height of theoretical plates on the column. Increase both the number and height of theoretical plates on the column. Increasing the flow rate of the mobile phase would Increase longitudinal diffusion Increase broadening due to mass transfer Increase broadening due to multiple paths You can improve the separation of components in gas chromatography by: Rasing the temperature of the injection port Rasing the temperature of the column isothermally Rasing the temperature of the column using temperature programming In GC, separation between two different solutes occurs because the solutes have different solubilities in the mobile phase the solutes volatilize at different rates in the injector the solutes spend different amounts of time in the stationary phasearrow_forwardplease draw and example of the following: Show the base pair connection(hydrogen bond) in DNA and RNAarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





