The molarity of the acid solution if 25.98 mL of 0.1180 M KOH solution reacts with 52.50 mL of CH 3 COOH solution is to be calculated. Concept introduction: Strong acids and strong bases are the substance that dissociates completely into its ions when dissolved in the solution. They dissociate completely in water to release H + ions and OH − ions. Weak acids and weak bases are the substance that does not dissociate completely into its ions when dissolved in the solution. They dissociate partially in water to release H + ions and OH − ions. Acetic acid ( CH 3 COOH ) is a weak acid and potassium hydroxide ( KOH ) is a strong base. Potassium hydroxide ( KOH ) dissociates completely into ions and the acetic acid dissociates to some extent into ions. They both react to form potassium acetate and a water molecule. The molecular equation for the acid-base reaction of acetic acid and potassium hydroxide is: CH 3 COOH ( a q ) + KOH ( a q ) → CH 3 COOK ( a q ) + H 2 O ( l )
The molarity of the acid solution if 25.98 mL of 0.1180 M KOH solution reacts with 52.50 mL of CH 3 COOH solution is to be calculated. Concept introduction: Strong acids and strong bases are the substance that dissociates completely into its ions when dissolved in the solution. They dissociate completely in water to release H + ions and OH − ions. Weak acids and weak bases are the substance that does not dissociate completely into its ions when dissolved in the solution. They dissociate partially in water to release H + ions and OH − ions. Acetic acid ( CH 3 COOH ) is a weak acid and potassium hydroxide ( KOH ) is a strong base. Potassium hydroxide ( KOH ) dissociates completely into ions and the acetic acid dissociates to some extent into ions. They both react to form potassium acetate and a water molecule. The molecular equation for the acid-base reaction of acetic acid and potassium hydroxide is: CH 3 COOH ( a q ) + KOH ( a q ) → CH 3 COOK ( a q ) + H 2 O ( l )
The molarity of the acid solution if 25.98 mL of 0.1180M KOH solution reacts with 52.50 mL of CH3COOH solution is to be calculated.
Concept introduction:
Strong acids and strong bases are the substance that dissociates completely into its ions when dissolved in the solution. They dissociate completely in water to release H+ ions and OH− ions.
Weak acids and weak bases are the substance that does not dissociate completely into its ions when dissolved in the solution. They dissociate partially in water to release H+ ions and OH− ions.
Acetic acid (CH3COOH) is a weak acid and potassium hydroxide (KOH) is a strong base. Potassium hydroxide (KOH) dissociates completely into ions and the acetic acid dissociates to some extent into ions. They both react to form potassium acetate and a water molecule.
The molecular equation for the acid-base reaction of acetic acid and potassium hydroxide is:
5)
There are no lone pairs shown in the structure below. Please add in all lone pairs and then give the
hybridization scheme for the compound. (8)
10,11
7)
1.2.3
H
4
| 14
8)
COC
12
13
H
16
15
H7
9)
-
5.6
C
8
H
10)
H
1).
2)
3)_
11)
12)
13)
4)_
14)
5)
15)
16)
6)
The sum of the numbers in the name of isA. 11; B. 13; C. 10; D. 12; E. none of the other answers iscorrect. I believe the awnser should be E to this problem but the solution to this problem is D 12. I'm honestly unsure how that's the solution. If you can please explain the steps to this type of problem and how to approach a problem like this it would be greatly appreciated!
Consider the following data for phosphorus:
g
atomic mass
30.974
mol
electronegativity
2.19
kJ
electron affinity
72.
mol
kJ
ionization energy
1011.8
mol
kJ
heat of fusion
0.64
mol
You may find additional useful data in the ALEKS Data tab.
Does the following reaction absorb or release energy?
2+
+
(1) P (g) + e
→ P (g)
Is it possible to calculate the amount of
energy absorbed
or released by reaction (1) using only the data above?
If you answered yes to the previous question, enter the
amount of energy absorbed or released by reaction (1):
Does the following reaction absorb or release energy?
00
release
absorb
Can't be decided with the data given.
yes
no
☐ kJ/mol
(²) P* (8) +
+
+ e →>>
P (g)
Is it possible to calculate the amount of energy absorbed
or released by reaction (2) using only the data above?
If you answered yes to the previous question, enter the
amount of energy absorbed or released by reaction (2):
☐
release
absorb
Can't be decided with the data given.
yes
no
kJ/mol
а
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.