The moles of Na + ions required to replace 0.015 M Ca 2 + and 0.0010 M Fe 3 + in 1.0 × 10 3 L of hard water is to be calculated. Concept introduction: Molarity ( M ) is one of the concentration terms that determine the number of moles of solute present in per liter of solution. Unit of molarity is mol/L . The expression to calculate the moles of the compound when molarity of solution and volume of solution are given is as follows: Moles of compound ( mol ) = [ volume of solution ( L ) ( molarity of solution ( mol ) 1L of solution ) ] The expression to calculate the moles of charge from an ion when moles of ion and mole of charge on ion are given is as follows: Moles of charge from ion ( mol ) = [ moles of ion ( mol ) ( mole of charge on ion ( mol ) 1 mol of ion ( mol ) ) ]
The moles of Na + ions required to replace 0.015 M Ca 2 + and 0.0010 M Fe 3 + in 1.0 × 10 3 L of hard water is to be calculated. Concept introduction: Molarity ( M ) is one of the concentration terms that determine the number of moles of solute present in per liter of solution. Unit of molarity is mol/L . The expression to calculate the moles of the compound when molarity of solution and volume of solution are given is as follows: Moles of compound ( mol ) = [ volume of solution ( L ) ( molarity of solution ( mol ) 1L of solution ) ] The expression to calculate the moles of charge from an ion when moles of ion and mole of charge on ion are given is as follows: Moles of charge from ion ( mol ) = [ moles of ion ( mol ) ( mole of charge on ion ( mol ) 1 mol of ion ( mol ) ) ]
The moles of Na+ ions required to replace 0.015M Ca2+ and 0.0010M Fe3+ in 1.0×103 L of hard water is to be calculated.
Concept introduction:
Molarity (M) is one of the concentration terms that determine the number of moles of solute present in per liter of solution. Unit of molarity is mol/L.
The expression to calculate the moles of the compound when molarity of solution and volume of solution are given is as follows:
Moles of compound(mol)=[volume of solution(L)(molarityofsolution(mol)1L of solution)]
The expression to calculate the moles of charge from an ion when moles of ion and mole of charge on ion are given is as follows:
Moles of charge from ion(mol)=[moles of ion(mol)(mole of charge on ion(mol)1mol of ion(mol))]
sketch the nature of the metal-alkylidene bonding interactions.
Part C
The perspective formula of isoleucine, an amino acid, is provided below.
HOOC
H₂NIC
H
川
CH3
CH,CH3
Draw the Newman projection in staggered conformation for isoleucine by viewing the molecule along the
C-2-C-3 bond.
1. Edit the Newman projection on the canvas.
2. Replace the appropriate hydrogens with the appropriate -CH3 or other groups.
3. If you need to start over, Undo or choose a Newman projection from the Templates toolbar
(bottom).
Important: Never delete the hydrogen atoms or bonds directly attached to the template, and do not move
them by dragging or dropping them. That will break the projections structures. Only replace them!
▸ View Available Hint(s)
0 2
H± 3D
EXP.
L
ד
י
CONT. 2
H
0
N
о
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.