(a)
Axial Compressive design strength of column AB.

Answer to Problem 4.7.10P
Explanation of Solution
Calculation:
calculate the ratio of column stiffness to girder at each and column AB by using the equation.
Here we have
G=ratio of column stiffness to girder stiffness
Here ratio of column stiffness to girder stiffness at end A is
For Joint A:
Substitute
Refer the alignment chart for the value of
Calculate the effective slenderness ratio for column by using the equation
Here
Calculate the upper limit elasticity using the equation
Since
Calculate the factored load by LRFD by using the equation
He re D is the dead load, L is the live load
Substitute
Calculate the stress coming on the column
Refer table
No modification is necessary
Calculate effective slenderness ratio in y direction
Calculate the buckling stress using the formula.
Check for slenderness ratio by using the formula.
Here
Since
Calculate the nominal compressive strength of column.
Conclusion:
Hence, here the design strength is estimated using the formula:
ii.
Themaximum axial compressive strength of column AB.
ii.

Answer to Problem 4.7.10P
Explanation of Solution
Calculation:
Calculate the factored load by ASD by using the equation
He re D is the dead load L is the live load
Substitute
Calculate stress coming on column.
Refer table
No modification is necessary
Calculate effective slenderness ratio in y direction
Effective
Calculate the buckling stress using the formula
Check for slenderness ratio by using the formula.
Here
Since
Calculate the compressive strength of column.
Calculate the maximum strength by using the formula.
Conclusion:
Therefore, the maximum strength is calculated using the formula:
Want to see more full solutions like this?
Chapter 4 Solutions
STEEL DESIGN W/ ACCESS
- By using the yield line theory, determine the moment (m) for an isotropic reinforced concrete two-way slab shown in figure under a uniformly distributed load. Use segment Equilibrium method 2.5 A 7.0m c.g. ㄨˋ B 1 B A IA 2.5 2.0 + 2.5 5.0marrow_forwardGiven cross-classification data for the Jeffersonville Transportation Study Area in this table, develop the family of cross-classification curves. (Use high = $55,000; medium = $25,000; low = $15,000. Submit a file with a maximum size of 1 MB.) Choose File No file chosen This answer has not been graded yet. Determine the number of trips produced (by purpose) for a traffic zone containing 400 houses with an average household income of $35,000. 1610 HBW HBO Your response differs from the correct answer by more than 10%. Double check your calculations. trips 1791 NHB Your response differs from the correct answer by more than 10%. Double check your calculations. trips 1791 Your response differs from the correct answer by more than 10%. Double check your calculations. tripsarrow_forward2.Water is siphoned from a reservoir. Determine (a) the maximum flow rate that can be achieved without cavitation occurring in the piping system (all indicated points) and (b) the maximum elevation of the highest point of the piping system to avoid cavitation. D = 20 cm, and d = 8 cm. The minimum pressure to avoid cavitation in the pipes is Pmin = 2340 Pa (absolute) for T = 20 °C. Water density = 1000 kg/m³. ✓ (1) T=20 C (4)arrow_forward
- 3. Water flows steadily down the inclined pipe as shown. Determine (a) the difference in pressure pı-p2 and (b) the head loss between section (1) and section (2). Flow 5 ft Section (1) 6 in. 30°/ Section (2) 8 in. Mercuryarrow_forward1. Streams of water from two tanks impinges upon each other as shown. If viscous effects are negligible and point A is a stagnation point, determine the height h. Free ets Air 20 ft P₁ = 25 psi 8 ftarrow_forwardProb. Design the dimensions (rectangular) and longitudinal reinforcements for the beans sham. Design the beams as SRBS. Given: fi= 21 MPa fy= 275 hPa X= 23.5 kaf. λ= 1.0arrow_forward
- Please answer the following show me how to solve in your paper dont type thank youarrow_forwardProb. Design the dimensions (rectangular) and longitudinal reinforcements for the beans sham. Design the beams as SRBS. Given: fi= 21 MPa fy= 275 hPa X= 23.5 kaf. λ= 1.0arrow_forwardQuestion 1Demonstrate and relate the different strategies you would use to enhance the buildingenvelope's performance in reducing heat ingress when retrofitting an existing building.Question 2There are several forms of renewable energy sources that are available for the builtenvironment.Demonstrate what some of these types of renewable energy sources are and evaluate in detailwhich type of renewable energy source is the most suitable for Singapore as well as itslimitations.Question 3Some of the broad strategies to optimize energy efficiency in existing building involve theuse of Energy Control Measures (ECMs).Demonstrate and appraise any THREE (3) Energy Control Measures for zero-cost, low-costand high-cost areas each.arrow_forward
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
