The reason for the solubility of zinc hydroxide in aqueous nitric acid is to be explained. Also, the balanced molecular, total ionic, and net ionic equations for the acid-base reaction between zinc hydroxide and nitric acid are to be written. Concept introduction: Strong acids and strong bases are the substance that dissociates completely into its ions when dissolved in the solution. They dissociate completely in water to release H + ions and OH − ions. Weak acids and weak bases are the substance that does not dissociate completely into its ions when dissolved in the solution. They dissociate partially in water to release H + ions and OH − ions. The driving force of the acid-base reaction is the formation of a gaseous product or precipitate in the reaction. There are three types of equations that are utilized to represent an ionic reaction: 1. Molecular equation 2. Total ionic equation 3. Net ionic equation The molecular equation represents the reactants and products of the ionic reaction in undissociated form. In total ionic reaction, all the dissociated ions that are present in the reaction mixture are represented and in net ionic reaction, the useful ions that participate in the reaction are represented. Spectator ions are the ions that are not a part of the actual chemical change but are present in the reaction mixture to balance the charge on both sides of the reaction. They are represented in the total ionic reaction. These are the dissolved ions present in the reaction mixture.
The reason for the solubility of zinc hydroxide in aqueous nitric acid is to be explained. Also, the balanced molecular, total ionic, and net ionic equations for the acid-base reaction between zinc hydroxide and nitric acid are to be written. Concept introduction: Strong acids and strong bases are the substance that dissociates completely into its ions when dissolved in the solution. They dissociate completely in water to release H + ions and OH − ions. Weak acids and weak bases are the substance that does not dissociate completely into its ions when dissolved in the solution. They dissociate partially in water to release H + ions and OH − ions. The driving force of the acid-base reaction is the formation of a gaseous product or precipitate in the reaction. There are three types of equations that are utilized to represent an ionic reaction: 1. Molecular equation 2. Total ionic equation 3. Net ionic equation The molecular equation represents the reactants and products of the ionic reaction in undissociated form. In total ionic reaction, all the dissociated ions that are present in the reaction mixture are represented and in net ionic reaction, the useful ions that participate in the reaction are represented. Spectator ions are the ions that are not a part of the actual chemical change but are present in the reaction mixture to balance the charge on both sides of the reaction. They are represented in the total ionic reaction. These are the dissolved ions present in the reaction mixture.
The reason for the solubility of zinc hydroxide in aqueous nitric acid is to be explained. Also, the balanced molecular, total ionic, and net ionic equations for the acid-base reaction between zinc hydroxide and nitric acid are to be written.
Concept introduction:
Strong acids and strong bases are the substance that dissociates completely into its ions when dissolved in the solution. They dissociate completely in water to release H+ ions and OH− ions.
Weak acids and weak bases are the substance that does not dissociate completely into its ions when dissolved in the solution. They dissociate partially in water to release H+ ions and OH− ions.
The driving force of the acid-base reaction is the formation of a gaseous product or precipitate in the reaction.
There are three types of equations that are utilized to represent an ionic reaction:
1. Molecular equation
2. Total ionic equation
3. Net ionic equation
The molecular equation represents the reactants and products of the ionic reaction in undissociated form. In total ionic reaction, all the dissociated ions that are present in the reaction mixture are represented and in net ionic reaction, the useful ions that participate in the reaction are represented.
Spectator ions are the ions that are not a part of the actual chemical change but are present in the reaction mixture to balance the charge on both sides of the reaction. They are represented in the total ionic reaction. These are the dissolved ions present in the reaction mixture.
How is the resonance structure formed to make the following reaction product. Please hand draw the arrows showing how the electrons move to the correct position. Do not use an AI answer. Please draw it yourself or don't bother.
Part II Calculate λ max of the following compounds using wood ward- Fiecer rules
a)
b)
c)
d)
e)
OH
OH
dissolved in dioxane
Br
Br
dissolved in methanol.
NH₂
OCH 3
OH
6. Match each of the lettered items in the column on
the left with the most appropriate numbered
item(s) in the column on the right. Some of the
numbered items may be used more than once
and some not at all.
a.
Z = 37
1.
b.
Mn
2.
C.
Pr
element in period 5 and group
14
element in period 5 and group
15
d. S
e. [Rn] 7s¹
f.
d block
metal
3. highest metallic character of all
the elements
4. paramagnetic with 5 unpaired
electrons
5. 4f36s2
6. isoelectronic with Ca²+ cation
7.
an alkaline metal
8. an f-block element
Chapter 4 Solutions
Student Solutions Manual For Silberberg Chemistry: The Molecular Nature Of Matter And Change With Advanced Topics
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.