Concept explainers
(a)
Interpretation:
The solution that has the highest molarity is to be determined.
Concept introduction:
Molarity
The expression to calculate the molarity of solution when moles of solute and volume of solution are given is as follows:
(a)
Answer to Problem 4.12P
The solution in beaker B has the highest molarity.
Explanation of Solution
Consider the particles present in the beaker as moles of solute.
The formula to calculate the molarity of solution in beaker is as follows:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Hence, the solution in beaker B has the highest molarity.
Molarity
(b)
Interpretation:
The solutions that have the same molarity are to be determined.
Concept introduction:
Molarity
The expression to calculate the molarity of solution when moles of solute and volume of solution are given is as follows:
(b)
Answer to Problem 4.12P
The solution in beaker A and F has the same molarity and solution in beaker C, D and E have the same molarity.
Explanation of Solution
Consider the particles present in the beaker as moles of solute.
The formula to calculate the molarity of solution in beaker is as follows:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
The solution in beaker A and F has the same molarity and the value of molarity is
Molarity
(c)
Interpretation:
Whether the mixture of solution A and C have a higher, a lower, or the same molarity as solution B is to be determined.
Concept introduction:
Molarity
The expression to calculate the molarity of solution when moles of solute and volume of solution are given is as follows:
(c)
Answer to Problem 4.12P
The mixture of solution A and C has a lower molarity as compared to solution B.
Explanation of Solution
The number of moles in solution A is
The formula to calculate the total volume is as follows:
Substitute
Substitute
The mixture of solution A and C has lower molarity as compared to solution B.
Molarity
(d)
Interpretation:
Whether the molarity when
Concept introduction:
Molarity
The expression to calculate the molarity of solution when moles of solute and volume of solution are given is as follows:
(d)
Answer to Problem 4.12P
The molarity when
Explanation of Solution
The volume of solution D is
The volume of solution F is
Substitute
Substitute
The molarity of solution D is same as the molarity of solution F.
Molarity
(e)
Interpretation:
The solvent must be evaporated from solution E for it to have the same molarity as solution A is to be calculated.
Concept introduction:
Molarity
The expression to calculate the molarity of solution when moles of solute and volume of solution are given is as follows:
(e)
Answer to Problem 4.12P
Explanation of Solution
The molarity of solution E should be equal to solution A. Therefore the molarity os solution should be
The formula to calculate the molarity of solution in beaker is as follows:
Rearrange the equation (3) to calculate the volume of solution evaporated.
Substitute
Therefore to get the same molarity as of the solution A,
Molarity
Want to see more full solutions like this?
Chapter 4 Solutions
Student Solutions Manual For Silberberg Chemistry: The Molecular Nature Of Matter And Change With Advanced Topics
- Please provide with answer, steps and explanation of ideas to solve.arrow_forwardIndicate whether the copper(II) acetate dimer, in its dihydrated form with the formula [(CH3COO)2Cu]2·2H2O, is a metal cluster, a cage compound, or neither.arrow_forwardPlease correct answer and don't use hand ratingarrow_forward
- Don't used hand raitingarrow_forwardReagan is doing an atomic absorption experiment that requires a set of zinc standards in the 0.4- 1.6 ppm range. A 1000 ppm Zn solution was prepared by dissolving the necessary amount of solid Zn(NO3)2 in water. The standards can be prepared by diluting the 1000 ppm Zn solution. Table 1 shows one possible set of serial dilutions (stepwise dilution of a solution) that Reagan could perform to make the necessary standards. Solution A was prepared by diluting 5.00 ml of the 1000 ppm Zn standard to 50.00 ml. Solutions C-E are called "calibration standards" because they will be used to calibrate the atomic absorption spectrometer. Table 1: Dilutions of Zinc Solutions Solution Zinc Solution Volume Diluted Solution Concentration used volume (ppm Zn) (mL) (mL) concentration (ppm Zn) Solution concentration A 1000 5.00 50.00 1.00×10² (ppm Zn(NO3)2) 2.90×10² Solution concentration (M Zn(NO3)2 1.53×10-3 B Solution A 5.00 100.00 5.00 C Solution B 5.00 50.00 0.50 7.65×10-6 D Solution B 10.00 50.00…arrow_forwardNonearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY