(a)
Interpretation:
The equation for Gibbs energy of mixing of gases is to be derived.
Concept introduction:
The term entropy is used to represent the randomness in a system. When a system moves from an ordered arrangement to a less ordered arrangement, then the entropy of the system increases. The entropy of mixing of gases is shown below.

Answer to Problem 4.62E
The equation for Gibbs energy of mixing of gases has been derived as shown below.
Explanation of Solution
The Gibbs free energy of mixing of gases is shown below.
Where,
•
•
•
•
The entropy of mixing of gases is shown below.
The change in Gibbs energy of the system is mathematically shown below.
Where,
•
•
•
•
The equation (3) can be written for the mixing process as shown below.
Assume that
Substitute the value of
Substitute the value of
Therefore, the equation for Gibbs energy of mixing of gases has been derived.
The equation for Gibbs energy of mixing of gases has been derived.
(b)
Interpretation:
The statement that the process of mixing of gases is always spontaneous is to be verified by a demonstration that the Gibbs free energy of mixing is always less than zero for a mixture of gases.
Concept introduction:
The Gibbs free energy of the system represents the maximum amount of non-expansion work achieved by a

Answer to Problem 4.62E
The mole fraction of gas is always less than one. The natural logarithm of a number that is less than one is always negative. Therefore, the value of change in Gibbs free energy for mixing of gas is always negative and the process is always spontaneous.
Explanation of Solution
The Gibbs free energy of mixing of gases is shown below.
Where,
•
•
•
•
The Gibbs free energy of mixing of two gases A and B can be given as shown below.
The mole fraction of both the gases is always less than one. The natural logarithm of a number that is less than one is always negative. The result of the addition of two negative values is also negative.
The right-hand side of the equation is negative for the mixing of gases.
Therefore, the negative value of change in Gibbs free energy indicates that the process of mixing of gases is spontaneous.
The mole fraction of gas is always less than one. The natural logarithm of a number that is less than one is always negative. Therefore, the value of change in Gibbs free energy for mixing of gas is always negative and the process is always spontaneous.
(c)
Interpretation:
The value of
Concept introduction:
The Gibbs free energy of the system represents the maximum amount of non-expansion work achieved by a thermodynamic system at isothermal and isobaric conditions. The change in Gibbs free energy is used to predict the spontaneity of the process. The Gibbs free energy of mixing of gases is shown below.

Answer to Problem 4.62E
The value of
Explanation of Solution
The number of moles of neon gas is
The number of moles of helium gas is
The number of moles of argon gas is
The temperature of mixing is
The temperature of mixing in Kelvin is shown below.
The total number of moles of gases is calculated as,
Where,
•
•
•
Substitute the value of
The mole fraction of a substance present in a system is shown below.
Where,
•
•
Substitute the value of the number of moles of neon gas and
Substitute the value of the number of moles of helium gas and
Substitute the value of the number of moles of argon gas and
The Gibbs free energy of mixing of gases is given as shown below.
Where,
•
•
•
•
Substitute the value of
Therefore, the value of
The value of
Want to see more full solutions like this?
Chapter 4 Solutions
Bundle: Physical Chemistry, 2nd + Student Solutions Manual
- Show work with explanation needed. Don't give Ai generated solutionarrow_forwardA Elschboard Part of SpeechT-D Alt Leaming App app.aktiv.com Curved arrows are used to illustrate the flow of electrons. Using the provided resonance structures, draw the curved electron- pushing arrows to show the interconversion between resonance hybrid contributors. Be sure to account for all bond-breaking and bond-making steps. Include all lone pairs and formal charges in the structures. Problem 45 of 10 I Select to Add Arrows N Please selarrow_forwardSo I'm working on molecular geometry. Can you help me with this stuff here and create three circles: one that's 120, one that’s 180, and one that’s 109.5?arrow_forward
- Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. Problem 164 of N Select to Add Arrows CHI CH 1 1 1 Parrow_forwardusing these can you help me , I guess convert them to lewis dit structures or full drawn out skeletal and I guess is that what would help me depict the bond angle.arrow_forwardShow reaction mechanism with explanation.don't give Ai generated solutionarrow_forward
- Please answer the questions and provide detailed explanations.arrow_forwardShow reaction mechanism. Don't give Ai generated solutionarrow_forwardPlease answer the questions and provide detailed explanation. Please also include the Hydrogens that are on the molecule to show how many signals there are.arrow_forward
- Capp aktiv.com Part of Speech Table for Assi x Aktiv Learning App K Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. Problem 232 of 10 10: Mg Select to Add Arrows Br O H :0 CI:O H Mg THE + dy Undo Reset Done Brarrow_forwardPlease answer the question and provide a detailed drawing of the structure. If there will not be a new C – C bond, then the box under the drawing area will be checked. Will the following reaction make a molecule with a new C – C bond as its major product: Draw the major organic product or products, if the reaction will work. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry.arrow_forwardNeed help with witharrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





