The forces on a dancer can be measured directly when a dancer performs a jump on a force plate that measures the force between her feet and the ground. A graph of force versus time throughout a vertical jump performed on a force plate is shown in Fig. P4.60. What is happening at 0.4 s ’The dancer is (a) bending her legs so that her body is accelerating downward; (b) pushing her body up with her legs and is almost ready to leave the ground; (c) in the air and at the top of her jump; (d) landing and her feet have just touched the ground.
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Additional Science Textbook Solutions
Essential University Physics: Volume 1 (3rd Edition)
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
College Physics
An Introduction to Thermal Physics
Conceptual Integrated Science
- Two objects, m1 = 3.00 kg and m2 = 8.50 kg, are attached by a massless cord passing over a frictionless pulley as shown in Figure P5.51. Assume the horizontal surface is frictionless. a. Draw a free-body diagram for each of the two objects. b. What is the tension in the cord? c. What is the magnitude of the acceleration of the two objects? FIGURE P5.51 Problems 51 and 65.arrow_forwardAn object of mass m1 = 5.00 kg placed on a frictionless, horizontal table is connected to a string that passes over a pulley and then is fastened to a hanging object of mass m2 = 9.00 kg as shown in Figure P4.28. (a) Draw free-body diagrams of both objects. Find (b) the magnitude of the acceleration of the objects and (c) the tension in the string. Figure P4.28arrow_forwardTwo blocks of mass 3.50 kg and 8.00 kg are connected by a massless string that passes over a frictionless pulley (Fig. P4.47). The inclines are frictionless. Find (a) the magnitude of the acceleration of each block and (b) the tension in the string. Figure P4.47arrow_forward
- A car accelerates down a hill (Fig. P4.57), going from rest to 30.0 m/s in 6.00 s. A toy inside the car hangs by a string from the cars ceiling. The ball in the figure represents the toy, of mass 0.100 kg. The acceleration is such that the string remains perpendicular to the ceiling. Determine (a) the angle and (b) the tension in the string. Figure P4.57arrow_forwardAn object of mass m = 1.00 kg is observed to have an acceleration a with a magnitude of 10.0 m/s2 in a direction 60.0 east of north. Figure P4.29 shows a view of the object from above. The force F2 acting on the object has a magnitude of 5.00 N and is directed north. Determine the magnitude and direction of the one other horizontal force F1 acting on the object. Figure P4.29arrow_forwardWhy is the following situation impossible? A 1.30-kg toaster is not plugged in. The coefficient of static friction between the toaster and a horizontal countertop is 0.350. To make the toaster start moving, you carelessly pull on its electric cord. Unfortunately, the cord has become frayed from your previous similar actions and will break if the tension in the cord exceeds 4.00 N. By pulling on the cord at a particular angle, you successfully start the toaster moving without breaking the cord.arrow_forward
- Two blocks, each of mass m, are hung from the ceiling of an elevator as in Figure P4.33. The elevator has an upward acceleration a. The strings have negligible mass. (a) Find the tensions T1 and T2 in the upper and lower strings in terms of m, a, and g. (b) Compare the two tensions and determine which string would break first if a is made sufficiently large. (c) What are the tensions if the cable supporting the elevator breaks? Figure P4.33 Problems 33 and 34.arrow_forwardA woman at an airport is towing her 15.0 kg suitcase at constant speed by pulling on a strap at an angle θ above the horizontal (see figure). She pulls on the strap with a 28.5 N force, and the friction force on the suitcase is 20.0 N. (a) If the woman still pulls on the strap with a 28.5 N force but wishes to accelerate the suitcase at a rate of 0.500 m/s2, at what angle (in degrees) must she pull on the strap? Assume that the rolling friction is independent of the angle of the strap. (b)What is the maximum acceleration of the suitcase if the woman can exert a maximum force of 28.5 N? (Enter the magnitude in m/s2.)arrow_forward4.57 CP Two boxes, A and B, are connected to each end of a light vertical rope, as shown in Fig. P4.57. A constant upward force F = 80.0 N is applied to box A. Starting from rest, box B descends 12.0 m in 4.00 s. The tension in the rope connecting the two boxes is 36.0 N. (a) What is the mass of box B? (b) What is the mass of box A?arrow_forward
- Two crates, one with mass 4.00 kg and the other with mass 6.00 kg, sit on the frictionless surface of a frozen pond, connected by a light rope (Fig. P4.39). A woman wearing golf shoes (for traction) pulls horizontally on the 6.00-kg crate with a force F that gives the crate an acceleration of 2.90 m/s^2. A). What is the acceleration of the 4.00-kg crate? B). Draw a free-body diagram for the 4.00-kg crate. Use that diagram and Newton’s second law to find the tension T in the rope that connects the two crates. C). Draw a free-body diagram for the 6.00-kg crate. What is the direction of the net force on the 6.00-kg crate? Which is larger in magnitude, T or F? D). Use part C and Newton’s second law to calculate the magnitude of F.arrow_forwardA 5.00 kg crate is suspended from the end of a short vertical rope of negligible mass. An upward force F1t2 is applied to the end of the rope, and the height of the crate above its initial position is given by y(t) = (2.80 m/s)t + (0.610 m/s3)t3. What is the magnitude of F when t = 4.00 s?arrow_forwardNick decided to visit the CN Tower with his friend. He gets into a stationary elevator on the ground floor. The elevator and its contents have a combined mass of 2568 kg. The elevator is suspended by a single cable. (a) Draw a FBD of the elevator and calculate the values of all the forces that are acting on it when at rest. (b) If the elevator starts moving upward with a constant velocity of 5.6 m/s, what are the values of the forces acting at this point? (c) After dropping off Nick on the top floor, the elevator descends to the ground floor at 3.7 m/s?, what are the values of all the forces acting at this point?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning