
(a)
Interpretation:
The given set of substances has to be classified as a metal, a non-metal, or a metalloid.
Concept Introduction:
Metals have typical physical properties such as hard when in solid state, shiny, ductile, malleable, very dense, high melting points and boiling points and have good electrical and thermal conductivity. Metals are located in the middle of and on the left of the standard periodic table.
Non-metal is an element that doesn’t exhibit characteristic properties of metals as hardness, ductile, lustre or flexibility. Non-metals are soft, brittle and good insulators of heat and electricity. Non-metals are located on the far right side of the standard periodic table, except hydrogen, which is located in the top corner.
An element with properties intermediate between that of a metal and a non-metal especially has the appearance of a metal but reacts chemically more as a non-metal. Most metalloids behave as semiconductors. In the standard periodic table metalloids occur along a diagonal line through the p block, from boron to polonium.
To classify
(b)
Interpretation:
The given set of substances has to be classified as a metal, a non-metal, or a metalloid.
Concept Introduction:
Metals have typical physical properties such as hard when in solid state, shiny, ductile, malleable, very dense, high melting points and boiling points and have good electricaand thermal conductivity. Metals are located in the middle of and on the left of the standard periodic table.
Non-metal is an element that doesn’t exhibit characteristic properties of metals as hardness, ductile, lustre or flexibility. Non-metals are soft, brittle and good insulators of heat and electricity. Non-metals are located on the far right side of the standard periodic table, except hydrogen, which is located in the top corner.
An element with properties intermediate between that of a metal and a non-metal especially has the appearance of a metal but reacts chemically more as a non-metal. Most metalloids behave as semiconductors. In the standard periodic table metalloids occur along a diagonal line through the p block, from boron to polonium.
To classify
(c)
Interpretation:
The given set of substances has to be classified as a metal, a non-metal, or a metalloid.
Concept Introduction:
Metals have typical physical properties such as hard when in solid state, shiny, ductile, malleable, very dense, high melting points and boiling points and have good electrical and thermal conductivity. Metals are located in the middle of and on the left of the standard periodic table.
Non-metal is an element that doesn’t exhibit characteristic properties of metals as hardness, ductile, lustre or flexibility. Non-metals are soft, brittle and good insulators of heat and electricity. Non-metals are located on the far right side of the standard periodic table, except hydrogen, which is located in the top corner.
An element with properties intermediate between that of a metal and a non-metal especially has the appearance of a metal but reacts chemically more as a non-metal. Most metalloids behave as semiconductors. In the standard periodic table metalloids occur along a diagonal line through the p block, from boron to polonium.
To classify
(d)
Interpretation:
The given set of substances has to be classified as a metal, a non-metal, or a metalloid.
Concept Introduction:
Metals have typical physical properties such as hard when in solid state, shiny, ductile, malleable, very dense, high melting points and boiling points and have good electrical and thermal conductivity. Metals are located in the middle of and on the left of the standard periodic table.
Non-metal is an element that doesn’t exhibit characteristic properties of metals as hardness, ductile, lustre or flexibility. Non-metals are soft, brittle and good insulators of heat and electricity. Non-metals are located on the far right side of the standard periodic table, except hydrogen, which is located in the top corner.
An element with properties intermediate between that of a metal and a non-metal especially has the appearance of a metal but reacts chemically more as a non-metal. Most metalloids behave as semiconductors. In the standard periodic table metalloids occur along a diagonal line through the p block, from boron to polonium.
To classify
(e)
Interpretation:
The given set of substances has to be classified as a metal, a non-metal, or a metalloid.
Concept Introduction:
Metals have typical physical properties such as hard when in solid state, shiny, ductile, malleable, very dense, high melting points and boiling points and have good electrical and thermal conductivity. Metals are located in the middle of and on the left of the standard periodic table.
Non-metal is an element that doesn’t exhibit characteristic properties of metals as hardness, ductile, lustre or flexibility. Non-metals are soft, brittle and good insulators of heat and electricity. Non-metals are located on the far right side of the standard periodic table, except hydrogen, which is located in the top corner.
An element with properties intermediate between that of a metal and a non-metal especially has the appearance of a metal but reacts chemically more as a non-metal. Most metalloids behave as semiconductors. In the standard periodic table metalloids occur along a diagonal line through the p block, from boron to polonium.
To classify
(f)
Interpretation:
The given set of substances has to be classified as a metal, a non-metal, or a metalloid.
Concept Introduction:
Metals have typical physical properties such as hard when in solid state, shiny, ductile, malleable, very dense, high melting points and boiling points and have good electrical and thermal conductivity. Metals are located in the middle of and on the left of the standard periodic table.
Non-metal is an element that doesn’t exhibit characteristic properties of metals as hardness, ductile, lustre or flexibility. Non-metals are soft, brittle and good insulators of heat and electricity. Non-metals are located on the far right side of the standard periodic table, except hydrogen, which is located in the top corner.
An element with properties intermediate between that of a metal and a non-metal especially has the appearance of a metal but reacts chemically more as a non-metal. Most metalloids behave as semiconductors. In the standard periodic table metalloids occur along a diagonal line through the p block, from boron to polonium.
To classify
(g)
Interpretation:
The given set of substances has to be classified as a metal, a non-metal, or a metalloid.
Concept Introduction:
Metals have typical physical properties such as hard when in solid state, shiny, ductile, malleable, very dense, high melting points and boiling points and have good electrical and thermal conductivity. Metals are located in the middle of and on the left of the standard periodic table.
Non-metal is an element that doesn’t exhibit characteristic properties of metals as hardness, ductile, lustre or flexibility. Non-metals are soft, brittle and good insulators of heat and electricity. Non-metals are located on the far right side of the standard periodic table, except hydrogen, which is located in the top corner.
An element with properties intermediate between that of a metal and a non-metal especially has the appearance of a metal but reacts chemically more as a non-metal. Most metalloids behave as semiconductors. In the standard periodic table metalloids occur along a diagonal line through the p block, from boron to polonium.
To classify
(h)
Interpretation:
The given set of substances has to be classified as a metal, a non-metal, or a metalloid.
Concept Introduction:
Metals have typical physical properties such as hard when in solid state, shiny, ductile, malleable, very dense, high melting points and boiling points and have good electrical and thermal conductivity. Metals are located in the middle of and on the left of the standard periodic table.
Non-metal is an element that doesn’t exhibit characteristic properties of metals as hardness, ductile, lustre or flexibility. Non-metals are soft, brittle and good insulators of heat and electricity. Non-metals are located on the far right side of the standard periodic table, except hydrogen, which is located in the top corner.
An element with properties intermediate between that of a metal and a non-metal especially has the appearance of a metal but reacts chemically more as a non-metal. Most metalloids behave as semiconductors. In the standard periodic table metalloids occur along a diagonal line through the p block, from boron to polonium.
To classify
(i)
Interpretation:
The given set of substances has to be classified as a metal, a non-metal, or a metalloid.
Concept Introduction:
Metals have typical physical properties such as hard when in solid state, shiny, ductile, malleable, very dense, high melting points and boiling points and have good electrical and thermal conductivity. Metals are located in the middle of and on the left of the standard periodic table.
Non-metal is an element that doesn’t exhibit characteristic properties of metals as hardness, ductile, lustre or flexibility. Non-metals are soft, brittle and good insulators of heat and electricity. Non-metals are located on the far right side of the standard periodic table, except hydrogen, which is located in the top corner.
An element with properties intermediate between that of a metal and a non-metal especially has the appearance of a metal but reacts chemically more as a non-metal. Most metalloids behave as semiconductors. In the standard periodic table metalloids occur along a diagonal line through the p block, from boron to polonium.
To classify
(j)
Interpretation:
The given set of substances has to be classified as a metal, a non-metal, or a metalloid.
Concept Introduction:
Metals have typical physical properties such as hard when in solid state, shiny, ductile, malleable, very dense, high melting points and boiling points and have good electrical and thermal conductivity. Metals are located in the middle of and on the left of the standard periodic table.
Non-metal is an element that doesn’t exhibit characteristic properties of metals as hardness, ductile, lustre or flexibility. Non-metals are soft, brittle and good insulators of heat and electricity. Non-metals are located on the far right side of the standard periodic table, except hydrogen, which is located in the top corner.
An element with properties intermediate between that of a metal and a non-metal especially has the appearance of a metal but reacts chemically more as a non-metal. Most metalloids behave as semiconductors. In the standard periodic table metalloids occur along a diagonal line through the p block, from boron to polonium.
To classify

Want to see the full answer?
Check out a sample textbook solution
Chapter 4 Solutions
EBK CHEMISTRY: ATOMS FIRST
- Using line angle formulas, draw thestructures of and name four alkanes that have total of 7carbons, one of which is tertiary.Please explain this in detail and can you also explain how to approach a similar problem like this as well?arrow_forwardUsing dashed line wedge projections drawthe indicated compounds and indicate whether thecompound you have drawn is R or S.(a) The two enantiomers of 2-chlorobutane. Can you please explain your steps and how you would approach a similar problem. Thank you!arrow_forward5) There are no lone pairs shown in the structure below. Please add in all lone pairs and then give the hybridization scheme for the compound. (8) 10,11 7) 1.2.3 H 4 | 14 8) COC 12 13 H 16 15 H7 9) - 5.6 C 8 H 10) H 1). 2) 3)_ 11) 12) 13) 4)_ 14) 5) 15) 16) 6)arrow_forward
- The sum of the numbers in the name of isA. 11; B. 13; C. 10; D. 12; E. none of the other answers iscorrect. I believe the awnser should be E to this problem but the solution to this problem is D 12. I'm honestly unsure how that's the solution. If you can please explain the steps to this type of problem and how to approach a problem like this it would be greatly appreciated!arrow_forwardConsider the following data for phosphorus: g atomic mass 30.974 mol electronegativity 2.19 kJ electron affinity 72. mol kJ ionization energy 1011.8 mol kJ heat of fusion 0.64 mol You may find additional useful data in the ALEKS Data tab. Does the following reaction absorb or release energy? 2+ + (1) P (g) + e → P (g) Is it possible to calculate the amount of energy absorbed or released by reaction (1) using only the data above? If you answered yes to the previous question, enter the amount of energy absorbed or released by reaction (1): Does the following reaction absorb or release energy? 00 release absorb Can't be decided with the data given. yes no ☐ kJ/mol (²) P* (8) + + + e →>> P (g) Is it possible to calculate the amount of energy absorbed or released by reaction (2) using only the data above? If you answered yes to the previous question, enter the amount of energy absorbed or released by reaction (2): ☐ release absorb Can't be decided with the data given. yes no kJ/mol аarrow_forwardThe number of hydrogens in an alkyne that has a main chain of 14carbons to which are attached a cyclobutyl ring, a benzene ring, an–OH group, and a Br is A. 34; B. 35; C. 36; D. 24; E. 43arrow_forward
- Hello! I have a 500 Hz H-NMR for 1,5-bis-(4-methoxyphenyl)-penta-1,4-dien-3-one. I need to label the signals with the corresponding H's. Then, find out if the two alkenes are cis or trans by calculating the J values. I believe that I have the H-NMR labeled correctly, but not sure if I got the J values correct to determine if the two alkenes in the compound will make the compound cis or trans.arrow_forwardWhat is the only possible H-Sb-H bond angle in SbH3?arrow_forwardpls helparrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning




