Manufacturing Processes for Engineering Materials (6th Edition)
Manufacturing Processes for Engineering Materials (6th Edition)
6th Edition
ISBN: 9780134290553
Author: Serope Kalpakjian, Steven Schmid
Publisher: PEARSON
bartleby

Concept explainers

Question
Book Icon
Chapter 4, Problem 4.59P

(a)

To determine

The reduction in the height of the specimen.

(a)

Expert Solution
Check Mark

Explanation of Solution

Formula used:

The expressionfor the volume of the original specimen is given as,

  V=π4(do2di2)h

Here, do is outer diameter of the specimen, di is inner diameter of the specimen and h is the height of specimen.

The expression for the volume during the plastic deformation of the original specimen is given as,

  V1=π4(do2di2)h

Here, do is outer diameter of the specimen and di is inner diameter of the specimen.

Calculation:

Refer figure 4.8(a) “Charts to determine friction in ring compression test” to obtain the values as,

The outer diameter of the specimen is do=0.75in .

The outer diameter of the specimen is di=0.375in .

Height of the specimen is h=0.25in .

The value for the volume of original specimen can be calculated by substituting the values of d0 , di and h as,

  V=π4(do2di2)hV=π4(do2di2)×hV=π4( 0.752 in2 0.3752 in2)×0.25inV=0.0828in3

The value for the height of specimen is calculated as,

  V=V10.0828in3=π4(d02di2)hh=0.105( d 0 2 d i 2 )

The reduction in height of specimen is calculated by taking different values of di and d0 from the figure 4.8(a) as,

    Specimen
    (Number)

      di(in)

      d0(in)
    FormulaCalculation
      h

      1.

      0.375

      0.75
    h=0.105(d02di2)h=0.105in3( 0.752 in2 0.3752 in2)
      0.25in

      2.

      0.477

      0.97
    h=0.105(d02di2)h=0.105in3( 0.972 in2 0.4772 in2)
      0.147in

      3.

      0.282

      1.04
    h=0.105(d02di2)h=0.105in3( 1.042 in2 0.2822 in2)
      0.104in

(b)

To determine

The coefficient of the friction for the each specimen.

(b)

Expert Solution
Check Mark

Explanation of Solution

The value of coefficient is calculated from the figure 4.8(a) corresponding to the different values of percentage reduction in height and reduction in internal diameter is given as,

    Specimen
    (Number)
    % Reduction in height% Reduction in Internal diameterCoefficient of Friction

      (μ)

    1.41.2-27.20.01
    2.58.424.80.10
    3.6053.10.20

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A counter flow double pipe heat exchanger is being used to cool hot oil from 320°F to 285°F using cold water. The water, which flows through the inner tube, enters the heat exchanger at 70°F and leaves at 175°F. The inner tube is ¾-std type L copper. The overall heat transfer coefficient based on the outside diameter of the inner tube is 140 Btu/hr-ft2-°F. Design conditions call for a total heat transfer duty (heat transfer rate between the two fluids) of 20,000 Btu/hr. Determine the required length of this heat exchanger (ft).
! Required information A one-shell-pass and eight-tube-passes heat exchanger is used to heat glycerin (cp=0.60 Btu/lbm.°F) from 80°F to 140°F by hot water (Cp = 1.0 Btu/lbm-°F) that enters the thin-walled 0.5-in-diameter tubes at 175°F and leaves at 120°F. The total length of the tubes in the heat exchanger is 400 ft. The convection heat transfer coefficient is 4 Btu/h-ft²°F on the glycerin (shell) side and 70 Btu/h-ft²°F on the water (tube) side. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the rate of heat transfer in the heat exchanger before any fouling occurs. Correction factor F 1.0 10 0.9 0.8 R=4.0 3.0 2.0.15 1.0 0.8.0.6 0.4 0.2 0.7 0.6 R= T1-T2 12-11 0.5 12-11 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 (a) One-shell pass and 2, 4, 6, etc. (any multiple of 2), tube passes P= T₁-11 The rate of heat transfer in the heat exchanger is Btu/h.
! Required information Air at 25°C (cp=1006 J/kg.K) is to be heated to 58°C by hot oil at 80°C (cp = 2150 J/kg.K) in a cross-flow heat exchanger with air mixed and oil unmixed. The product of heat transfer surface area and the overall heat transfer coefficient is 750 W/K and the mass flow rate of air is twice that of oil. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Air Oil 80°C Determine the effectiveness of the heat exchanger.
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY