DATA You are a Starfleet captain going boldly where no man has gone before. You land on a distant planet and visit an engineering testing lab. In one experiment a short, light rope is attached to the top of a block and a constant upward force F is applied to the free end of the rope. The block has mass m and is initially at rest. As F is varied, the time for the block, to move upward 8.00 m is measured. The values that you collected are given in the table: F(N) Time (s) 250 3.3 300 2.2 350 1.7 400 1.5 450 1.3 500 1. 2 (a) Plot F versus the acceleration a of the block. (b) Use your graph to determine the mass m of the block and the acceleration of gravity g at the surface of the planet. Note that even on that planet, measured values contain some experimental error.
DATA You are a Starfleet captain going boldly where no man has gone before. You land on a distant planet and visit an engineering testing lab. In one experiment a short, light rope is attached to the top of a block and a constant upward force F is applied to the free end of the rope. The block has mass m and is initially at rest. As F is varied, the time for the block, to move upward 8.00 m is measured. The values that you collected are given in the table: F(N) Time (s) 250 3.3 300 2.2 350 1.7 400 1.5 450 1.3 500 1. 2 (a) Plot F versus the acceleration a of the block. (b) Use your graph to determine the mass m of the block and the acceleration of gravity g at the surface of the planet. Note that even on that planet, measured values contain some experimental error.
DATA You are a Starfleet captain going boldly where no man has gone before. You land on a distant planet and visit an engineering testing lab. In one experiment a short, light rope is attached to the top of a block and a constant upward force F is applied to the free end of the rope. The block has mass m and is initially at rest. As F is varied, the time for the block, to move upward 8.00 m is measured. The values that you collected are given in the table:
F(N)
Time (s)
250
3.3
300
2.2
350
1.7
400
1.5
450
1.3
500
1. 2
(a) Plot F versus the acceleration a of the block. (b) Use your graph to determine the mass m of the block and the acceleration of gravity g at the surface of the planet. Note that even on that planet, measured values contain some experimental error.
A cart on wheels (assume frictionless) with a mass of 20 kg is pulled rightward with a 50N force. What is its acceleration?
Two-point charges of 5.00 µC and -3.00 µC are placed 0.250 m apart.a) What is the electric force on each charge? Include strength and direction and a sketch.b) What would be the magnitude of the force if both charges are positive? How about the direction?
c) What will happen to the electric force on each piece of charge if they are moved twice as far apart? (Give a numerical answer as well as an explanation.)
Chapter 4 Solutions
University Physics with Modern Physics, Books a la Carte Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.