PHYSICS 1250 PACKAGE >CI<
9th Edition
ISBN: 9781305000988
Author: SERWAY
Publisher: CENGAGE LEARNING (CUSTOM)
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4.4OQ
A projectile is launched on the Earth with a certain initial velocity and moves without air resistance. Another projectile is launched with the same initial velocity on the Moon, where the acceleration due to gravity is one-sixth as large. How does the maximum altitude of the projectile on the Moon compare with that of the projectile on the Earth? (a) It is one-sixth as large. (b) It is the same. (c) It is
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A rock is thrown off a cliff at an angle of 53° with respect to the horizontal. The cliff is 100 m high. The initial speed of the rock is 30 m/s. (a) How high above the edge of the cliff does the rock rise? (b) How far has it moved horizontally when it is at maximum altitude? (c) How long after the release does it hit the ground? (d) What is the range of the rock? (e) What are the horizontal and vertical positions of the rock relative to the edge of the cliff at t = 2.0 s, t = 4.0 s, and t = 6.0 s?
A ball is kicked at ground level with an initial velocity of 16 m/s in the horizontal direction and 15 m/s in the vertical direction.
(a) At what speed does the ball hit the ground in m/s?
(b) For how long does the ball remain in the air in seconds?
(c) What maximum height is attained by the ball in meters?
A skier leaves the end of a horizontal ski jump at 22.0 m/s and falls through a vertical distance of 3.20 m before landing. Neglecting air resistance, (a) how long does it take the skier to reach the ground? (b) How far horizontally does the skier travel in the air before landing?
Chapter 4 Solutions
PHYSICS 1250 PACKAGE >CI<
Ch. 4 - Consider the following controls in an automobile...Ch. 4 - (i) As a projectile thrown at an upward angle...Ch. 4 - Rank the launch angles for the five paths in...Ch. 4 - A particle moves in a circular path of radius r...Ch. 4 - A particle moves along a path, and its speed...Ch. 4 - Figure OQ4.1 shows a bird's-eye view of a car...Ch. 4 - Entering his dorm room, a student tosses his book...Ch. 4 - A student throws a heavy red ball horizontally...Ch. 4 - A projectile is launched on the Earth with a...Ch. 4 - Does a car moving around a circular track with...
Ch. 4 - An astronaut hits a golf ball on the Moon. Which...Ch. 4 - A projectile is launched on the Earth with a...Ch. 4 - A girl, moving at 8 m/s on in-line skates, is...Ch. 4 - A sailor drops a wrench front the top of a...Ch. 4 - A baseball is thrown from the outfield toward the...Ch. 4 - Prob. 4.11OQCh. 4 - Prob. 4.12OQCh. 4 - In which of the following situations is the moving...Ch. 4 - Prob. 4.1CQCh. 4 - Ail ice skater is executing a figure eight,...Ch. 4 - If you know the position vectors of a particle at...Ch. 4 - Describe how a driver can steer a car traveling at...Ch. 4 - Prob. 4.5CQCh. 4 - Prob. 4.6CQCh. 4 - Explain whether or not the following particles...Ch. 4 - A motorist drives south at 20.0 m/s for 3.00 min,...Ch. 4 - When the Sun is directly overhead, a hawk dives...Ch. 4 - Suppose the position vector for a particle is...Ch. 4 - The coordinates of an object moving in the xy...Ch. 4 - A golf ball is hit off a tee at the edge of a...Ch. 4 - A particle initially located at the origin has an...Ch. 4 - The vector position of a particle varies in time...Ch. 4 - It is not possible to see very small objects, such...Ch. 4 - A fish swimming in a horizontal plane has velocity...Ch. 4 - Review. A snowmobile is originally at the point...Ch. 4 - Mayan kings and many school sports teams are named...Ch. 4 - An astronaut on a strange planet finds that she...Ch. 4 - In a local bar, a customer slides an empty beer...Ch. 4 - In a local bar. a customer slides an empty beer...Ch. 4 - A projectile is fired in such a way that its...Ch. 4 - To start an avalanche on a mountain slope, an...Ch. 4 - Chinook salmon are able to move through water...Ch. 4 - A rock is thrown upward from level ground in such...Ch. 4 - The speed of a projectile when it reaches its...Ch. 4 - A ball is tossed from an upper-story window of a...Ch. 4 - A firefighter, a distance d from a burning...Ch. 4 - A landscape architect is planning an artificial...Ch. 4 - A placekicker must kick a football from a point...Ch. 4 - A basketball star covers 2.80 m horizontally in a...Ch. 4 - A playground is on the flat roof of a city school,...Ch. 4 - The motion of a human body through space can be...Ch. 4 - A soccer player kicks a rock horizontally off a...Ch. 4 - A projectile is fired from the top of a cliff of...Ch. 4 - A student stands at the edge of a cliff and throws...Ch. 4 - The record distance in the sport of throwing...Ch. 4 - A boy stands on a diving board and tosses a stone...Ch. 4 - A home run is hit in such a way that the baseball...Ch. 4 - The athlete shown in Figure P4.21 rotates a...Ch. 4 - In Example 4.6, we found the centripetal...Ch. 4 - Casting molten metal is important in many...Ch. 4 - A tire 0.500 m in radius rotates at a constant...Ch. 4 - Review. The 20-g centrifuge at NASAs Ames Research...Ch. 4 - An athlete swings a ball, connected to the end of...Ch. 4 - The astronaut orbiting the Earth in Figure P4.19...Ch. 4 - Section 4.5 Tangential and Radial Acceleration...Ch. 4 - A train slows down as it rounds a sharp horizontal...Ch. 4 - A ball swings counterclockwise in a vertical...Ch. 4 - (a) Can a particle moving with instantaneous speed...Ch. 4 - The pilot of an airplane notes that the compass...Ch. 4 - An airplane maintains a speed of 630 km/h relative...Ch. 4 - A moving beltway at an airport has a speed 1 and a...Ch. 4 - A police car traveling at 95.0 km/h is traveling...Ch. 4 - A car travels due east with a speed of 50.0 km/h....Ch. 4 - A bolt drops from the ceiling of a moving train...Ch. 4 - A river has a steady speed of 0.500 m/s. A student...Ch. 4 - A river flows with a steady speed v. A student...Ch. 4 - A Coast Guard cutter detects an unidentified ship...Ch. 4 - A science student is riding on a flatcar of a...Ch. 4 - A farm truck moves due east with a constant...Ch. 4 - A ball on the end of a string is whirled around in...Ch. 4 - A ball is thrown with an initial speed i at an...Ch. 4 - Why is the following situation impassible? A...Ch. 4 - A particle starts from the origin with velocity...Ch. 4 - The Vomit Comet. In microgravity astronaut...Ch. 4 - A basketball player is standing on the floor 10.0...Ch. 4 - Lisa in her Lamborghini accelerates at...Ch. 4 - A boy throws a stone horizontally from the top of...Ch. 4 - A flea is at point on a horizontal turntable,...Ch. 4 - Towns A and B in Figure P4.64 are 80.0 km apart. A...Ch. 4 - A catapult launches a rocket at an angle of 53.0...Ch. 4 - A cannon with a muzzle speed of 1 000 m/s is used...Ch. 4 - Why is the following situation impossible? Albert...Ch. 4 - As some molten metal splashes, one droplet flies...Ch. 4 - An astronaut on the surface of the Moon fires a...Ch. 4 - A pendulum with a cord of length r = 1.00 m swings...Ch. 4 - A hawk is flying horizontally at 10.0 m/s in a...Ch. 4 - A projectile is launched from the point (x = 0, y...Ch. 4 - A spring cannon is located at the edge of a table...Ch. 4 - An outfielder throws a baseball to his catcher in...Ch. 4 - A World War II bomber flies horizontally over...Ch. 4 - A truck loaded with cannonball watermelons stops...Ch. 4 - A car is parked on a steep incline, making an...Ch. 4 - An aging coyote cannot run fast enough to catch a...Ch. 4 - A fisherman sets out upstream on a river. His...Ch. 4 - Do not hurt yourself; do not strike your hand...Ch. 4 - A skier leaves the ramp of a ski jump with a...Ch. 4 - Two swimmers, Chris and Sarah, start together at...Ch. 4 - The water in a river flows uniformly at a constant...Ch. 4 - A person standing at the top of a hemispherical...Ch. 4 - A dive-bomber has a velocity or 280 m/s at ail...Ch. 4 - A projectile is fired up an incline (incline angle...Ch. 4 - A fireworks rocket explodes at height h, the peak...Ch. 4 - In the What If? section of Example 4.5, it was...Ch. 4 - An enemy ship is on the east side of a mountain...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A projectile is launched on the Earth with a certain initial velocity and moves without air resistance. Another projectile is launched with the same initial velocity on the Moon, where the acceleration due to gravity is one-sixth as large. How does the range of the projectile on the Moon compare with that of the projectile on the Earth? (a) It is one-sixth as large. (b) It is the same. (c) It is 6 times larger. (d) It is 6 times larger. (e) It is 36 times larger.arrow_forwardA football is thrown on a long pass. Compared to the balls initial horizontal velocity, the velocity at the highest point is ___. (2.5) (a) greater (b) less (c) the samearrow_forwardThe position of a particle moving in the x-y plane is given by r = 2cos(3t)ˆi + 2sin(3t)ˆj, where is in meters and t is in seconds. (a) Show that this represents circular motion of radius 2m centered at the origin. (b) Determine the velocity and acceleration vectors as functions of time. (c) Determine the speed and magnitude of the acceleration. (d) Show that a = v^2/r . (e) Show that the acceleration vector always points toward the center of the circle.arrow_forward
- A ball is launched horizontally from the top of a 100 m tall building and lands 150 m (horizontal distance) from the base of the building. Ignore air resistance. (a) How long in seconds is the ball in the air? (b) What must have been the initial horizontal component of the velocity in m/s? (c) What is the vertical component of the velocity in m/s just before the ball hits the ground? (d) What is the speed or magnitude of the resultant velocity (including both the horizontal and vertical components) in m/s of the ball just before it hits the ground?arrow_forwardAn object is thrown off the top of a building with velocity 28 m/s at an angle of 32° with respect to the horizontal. It takes 6.2 s for the object to land. (a) How high is the building in meters? (b) What is the horizontal distance that the object travels in meters?arrow_forwardPLEASE WORK ON THE SECOND QUESTION(Question B). Problem: As the first human astronaut to land on a distant planet, you are standing on the edge of a small cliff. You toss a small experiment apparatus straight up in the air and it reaches a maximum height of 3.0m above the cliff. The apparatus then falls to the bottom of the cliff, landing a distance 10 m below its initial position. A) Given that the acceleration due to gravity on the exoplanet is a=−5.6j^ m/s^2 {REFER TO ONE OF THE PICTURE}, how long did it take for the apparatus to get from the top of its trajectory to the bottom of the cliff? The coordinate system is set up such that "up" is in the +j^ direction. Answer a): 2.2 seconds. ****B)Suppose the time between the apparatus leaving your hand and landing on the ground was measured to be t=4.80s. What was the velocity of the apparatus leaving your hand?arrow_forward
- An airplane takes off and flies upward at an angle of 19° with a constant speed of 272 m/s. While the plane is flying upward, a piece of the engine falls off when the plane reaches a height of 880 m. (While not part of the problem, assume the plane eventually lands safely.) (a) How long does it take the piece of the engine to reach the ground? Give your answer in seconds. (b) What is the horizontal distance covered by the piece of the engine before it lands? Give your answer in meters.arrow_forwardDuring volcanic eruptions, chunks of solid rock can be blasted out of the volcano; these projectiles are called volcanic bombs. The figure shows a cross section of Mt. Fuji, in Japan. (a) At what initial speed would a bomb have to be ejected, at angle 0 d = 10.0 km? Ignore, for the moment, the effects of air on the bomb's travel. (b) What would be the time of flight? 32° to the horizontal, from the vent at A in order to fall at the foot of the volcano at B, at vertical distance h = 3.40 km and horizontal distance (a) Number Units (b) Number Unitsarrow_forwardA rock is thrown horizontally with a speed of 18 m/s from a vertical cliff of height 31 m. (a) How long does it take to reach the horizontal ground below? S (b) How far will it land from the base of the cliff? m (c) What is the velocity (magnitude and direction counterclockwise from the +x-axis, which is the initial horizontal direction in which the rock was thrown) of the rock just before it hits the ground? Magnitude m/s Direction Oarrow_forward
- A rock is thrown off a cliff at an angle of 59° above the horizontal. The cliff is 135 m high. The initial speed of the rock is 20 m/s. (Assume the height of the thrower is negligible.) (a) How high above the edge of the cliff does the rock rise (in m)?wrong answers are 149.449m and 18.016m (b) How far has it moved horizontally when it is at maximum altitude (in m)? (c) How long after the release does it hit the ground (in s)? (d) What is the range of the rock (in m)? (e)What are the horizontal and vertical positions (in m) of the rock relative to the edge of the cliff at t = 2.0 s, t = 4.0 s, and t = 6.0 s?(Assume the +x-direction is in the horizontal direction pointing away from the cliff, the +y-direction is up towards the sky, and x = y = 0 at the point from which the rock is thrown.) x(2.0 s) = my(2.0 s) = mx(4.0 s) = my(4.0 s) = mx(6.0 s) = my(6.0 s) = marrow_forwardA rock is thrown off a cliff at an angle of 59° above the horizontal. The cliff is 135 m high. The initial speed of the rock is 20 m/s. (Assume the height of the thrower is negligible.) (a) How high above the edge of the cliff does the rock rise (in m)?wrong answers are 149.449m and 18.016m (b) How far has it moved horizontally when it is at maximum altitude (in m)? (c) How long after the release does it hit the ground (in s)? (d) What is the range of the rock (in m)? (e)What are the horizontal and vertical positions (in m) of the rock relative to the edge of the cliff at t = 2.0 s, t = 4.0 s, and t = 6.0 s?(Assume the +x-direction is in the horizontal direction pointing away from the cliff, the +y-direction is up towards the sky, and x = y = 0 at the point from which the rock is thrown.) x(2.0 s) = my(2.0 s) = mx(4.0 s) = my(4.0 s) = mx(6.0 s) = my(6.0 s) = marrow_forwardSuppose a skydiver jumps out of a plane 15,000 meters above the ground. It takes him 2.0 seconds to pull the cord to deploy the parachute and another 2.0 seconds for the parachute to be fully deployed. Additionally, in order to land safely on the ground, his parachute must be fully deployed 10.0 seconds before he hits the ground. With this information and assuming there is no additional air resistance or changes in atmospheric density, what is the maximum time into his fall that he can wait to pull the cord in order to make it safely to the ground?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY