Connect with LearnSmart for Krauskopf: The Physical Universe, 16e
16th Edition
ISBN: 9781259663895
Author: KRAUSKOPF, Konrad B.
Publisher: Mcgraw-hill Higher Education (us)
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 44E
To determine
The explanation of the tide and wave energies can be captured.
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
Shown to the right is a block of mass m=5.71kgm=5.71kg on a ramp that makes an angle θ=24.1∘θ=24.1∘ with the horizontal. This block is being pushed by a horizontal force, F=229NF=229N. The coefficient of kinetic friction between the two surfaces is μ=0.51μ=0.51.
Enter an expression for the acceleration of the block up the ramp using variables from the problem statement together with gg for the acceleration due to gravity.
a=
If the density and atomic mass of copper are respectively 8.80 x 103 kg/m³ and 63.5 kg/kmol (note that 1 kmol = 1,000 mol), and copper has one free electron per copper atom, determine the following.
(a) the drift speed of the electrons in a 10 gauge copper wire (2.588 mm in diameter) carrying a 13.5 A current
1.988-4
See if you can obtain an expression for the drift speed of electrons in a copper wire in terms of the current in the wire, the diameter of the wire, the molecular weight and mass density of copper, Avogadro's number, and the charge
on an electron. m/s
(b) the Hall voltage if a 2.68 T field is applied perpendicular to the wire
3.34e-6
x
Can you start with basic equations for the electric and magnetic forces acting on the electrons moving through the wire and obtain a relationship between the magnitude of the electric and magnetic field and the drift speed of the
electrons? How is the magnitude of the electric field related to the Hall voltage and the diameter of the wire? V
(a) At what speed (in m/s) will a proton move in a circular path of the same radius as an electron that travels at 7.85 x 100 m/s perpendicular to the Earth's magnetic field at an altitude where the field strength is 1.20 x 10-5 T?
4.27e3
m/s
(b) What would the radius (in m) of the path be if the proton had the same speed as the electron?
0.685
x m
(c) What would the radius (in m) be if the proton had the same kinetic energy as the electron?
0.0084
m
(d) What would the radius (in m) be if the proton had the same momentum as the electron?
0.0303
x m
Chapter 4 Solutions
Connect with LearnSmart for Krauskopf: The Physical Universe, 16e
Ch. 4 - In 2100 the number of people in the world is...Ch. 4 - Arrange these sources in the order of the energy...Ch. 4 - Of the following, the energy source likely to be...Ch. 4 - Prob. 4MCCh. 4 - Prob. 5MCCh. 4 - Prob. 6MCCh. 4 - Energy not ultimately derived from solar radiation...Ch. 4 - If present trends continue, an optimistic average...Ch. 4 - Prob. 9MCCh. 4 - Prob. 10MC
Ch. 4 - The radiation from an object at room temperature...Ch. 4 - The earths atmosphere is primarily heated by a....Ch. 4 - Prob. 13MCCh. 4 - Prob. 14MCCh. 4 - Prob. 15MCCh. 4 - Of the following fuels, the one that gives off the...Ch. 4 - Of the following fuels, the one that gives off the...Ch. 4 - Which of the following is not a fossil fuel? a....Ch. 4 - Prob. 19MCCh. 4 - The proportion of oil used by the United States...Ch. 4 - Most oil today is used for a. transportation b....Ch. 4 - Prob. 22MCCh. 4 - Prob. 23MCCh. 4 - The least polluting of the following fuels is a....Ch. 4 - Prob. 25MCCh. 4 - Prob. 26MCCh. 4 - The worst emitters of mercury, which damages the...Ch. 4 - Prob. 28MCCh. 4 - Of the following countries, the one that obtains...Ch. 4 - The proportion of electricity generated in the...Ch. 4 - In the relatively near future, the technology most...Ch. 4 - Prob. 32MCCh. 4 - Bright sunlight might deliver energy to an area of...Ch. 4 - The output of which of the following renewable...Ch. 4 - Prob. 35MCCh. 4 - Of the following technologies, the one that may...Ch. 4 - Of the following technologies, the one farthest...Ch. 4 - Biofuels based on which of the following seem to...Ch. 4 - Of the following, the strategy for coping with...Ch. 4 - Prob. 40MCCh. 4 - Population and Prosperity 1. What are the three...Ch. 4 - Energy Supply and Consumption 2. Even if the...Ch. 4 - The average rate of energy consumption per person...Ch. 4 - List the fossil fuels in the order in which they...Ch. 4 - Explain how sunlight is responsible for these...Ch. 4 - What energy sources cannot be traced to sunlight...Ch. 4 - Approximately what proportion of the worlds...Ch. 4 - (a) Give two reasons why global warming is causing...Ch. 4 - Once the polar ice sheets have melted beyond a...Ch. 4 - The oceans as well as the atmosphere are growing...Ch. 4 - When was the last time world temperatures were as...Ch. 4 - Every body of matter radiates light. What is...Ch. 4 - What is the nature of the greenhouse effect in the...Ch. 4 - Prob. 14ECh. 4 - Prob. 15ECh. 4 - (a) Why is deforestation so important in global...Ch. 4 - Prob. 17ECh. 4 - Prob. 18ECh. 4 - Most of the worlds oil is used as a fuel for what...Ch. 4 - Prob. 20ECh. 4 - Prob. 21ECh. 4 - What is the chief reason why the average fuel...Ch. 4 - Prob. 23ECh. 4 - Why is natural gas rarely used as a vehicle fuel?Ch. 4 - What is methane hydrate? Where is it found and why...Ch. 4 - Prob. 26ECh. 4 - Prob. 27ECh. 4 - Prob. 28ECh. 4 - Prob. 29ECh. 4 - Prob. 30ECh. 4 - What is the basic difference between nuclear...Ch. 4 - What role does uranium play in nuclear energy...Ch. 4 - How does a nuclear power plant produce...Ch. 4 - Explain why no nuclear power plants were planned...Ch. 4 - Prob. 35ECh. 4 - Prob. 36ECh. 4 - Prob. 37ECh. 4 - Prob. 38ECh. 4 - Prob. 39ECh. 4 - Give several reasons why fossil-fuel energy is...Ch. 4 - Prob. 41ECh. 4 - Prob. 42ECh. 4 - Prob. 43ECh. 4 - Prob. 44ECh. 4 - (a) What major advantage does geothermal energy...Ch. 4 - Prob. 46ECh. 4 - Prob. 47ECh. 4 - What are the advantages and disadvantages of...Ch. 4 - Prob. 49ECh. 4 - Prob. 50ECh. 4 - Prob. 51ECh. 4 - A major obstacle to a worldwide agreement on...Ch. 4 - Explain the cap-and-trade system for controlling...
Knowledge Booster
Similar questions
- Two charges are placed on the x axis. One of the charges (91 = +6.63 μC) is at x₁ = +3.00 cm and the other (92 = -24.2 μC) is at x2 = +9.00 cm. Find the net electric field (magnitude and direction given as a plus or minus sign) at (a) x = 0 cm and (b) x = +6.00 cm.arrow_forwardThe diagram shows the all of the forces acting on a body of mass 2.76 kg. The three forces have magnitudes F1 = 65.2 N, F2 = 21.6 N, and F3 = 77.9 N, with directions as indicted in the diagram, where θ = 49.9 degrees and φ = 21.1 degrees. The dashed lines are parallel to the x and y axes. At t = 0, the body is moving at a speed of 6.87 m/s in the positive x direction. a. whats the x component of the acceleration? b. whats the y component of the acceleration? c. whats the speed of the body in m/s at t = 12.3s? d. whats the magnitude of the displacement of the body n meters between t = 0 and 12.3s?arrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardA cylinder with a piston contains 0.153 mol of nitrogen at a pressure of 1.83×105 Pa and a temperature of 290 K. The nitrogen may be treated as an ideal gas. The gas is first compressed isobarically to half its original volume. It then expands adiabatically back to its original volume, and finally it is heated isochorically to its original pressure. Part A Compute the temperature at the beginning of the adiabatic expansion. Express your answer in kelvins. ΕΠΙ ΑΣΦ T₁ = ? K Submit Request Answer Part B Compute the temperature at the end of the adiabatic expansion. Express your answer in kelvins. Π ΑΣΦ T₂ = Submit Request Answer Part C Compute the minimum pressure. Express your answer in pascals. ΕΠΙ ΑΣΦ P = Submit Request Answer ? ? K Paarrow_forwardLearning Goal: To understand the meaning and the basic applications of pV diagrams for an ideal gas. As you know, the parameters of an ideal gas are described by the equation pV = nRT, where p is the pressure of the gas, V is the volume of the gas, n is the number of moles, R is the universal gas constant, and T is the absolute temperature of the gas. It follows that, for a portion of an ideal gas, pV = constant. Τ One can see that, if the amount of gas remains constant, it is impossible to change just one parameter of the gas: At least one more parameter would also change. For instance, if the pressure of the gas is changed, we can be sure that either the volume or the temperature of the gas (or, maybe, both!) would also change. To explore these changes, it is often convenient to draw a graph showing one parameter as a function of the other. Although there are many choices of axes, the most common one is a plot of pressure as a function of volume: a pV diagram. In this problem, you…arrow_forward
- Learning Goal: To understand the meaning and the basic applications of pV diagrams for an ideal gas. As you know, the parameters of an ideal gas are described by the equation pV = nRT, where p is the pressure of the gas, V is the volume of the gas, n is the number of moles, R is the universal gas constant, and T is the absolute temperature of the gas. It follows that, for a portion of an ideal gas, pV = constant. T One can see that, if the amount of gas remains constant, it is impossible to change just one parameter of the gas: At least one more parameter would also change. For instance, if the pressure of the gas is changed, we can be sure that either the volume or the temperature of the gas (or, maybe, both!) would also change. To explore these changes, it is often convenient to draw a graph showing one parameter as a function of the other. Although there are many choices of axes, the most common one is a plot of pressure as a function of volume: a pV diagram. In this problem, you…arrow_forward■ Review | Constants A cylinder with a movable piston contains 3.75 mol of N2 gas (assumed to behave like an ideal gas). Part A The N2 is heated at constant volume until 1553 J of heat have been added. Calculate the change in temperature. ΜΕ ΑΣΦ AT = Submit Request Answer Part B ? K Suppose the same amount of heat is added to the N2, but this time the gas is allowed to expand while remaining at constant pressure. Calculate the temperature change. AT = Π ΑΣΦ Submit Request Answer Provide Feedback ? K Nextarrow_forward4. I've assembled the following assortment of point charges (-4 μC, +6 μC, and +3 μC) into a rectangle, bringing them together from an initial situation where they were all an infinite distance away from each other. Find the electric potential at point "A" (marked by the X) and tell me how much work it would require to bring a +10.0 μC charge to point A if it started an infinite distance away (assume that the other three charges remains fixed). 300 mm -4 UC "A" 0.400 mm +6 UC +3 UC 5. It's Friday night, and you've got big party plans. What will you do? Why, make a capacitor, of course! You use aluminum foil as the plates, and since a standard roll of aluminum foil is 30.5 cm wide you make the plates of your capacitor each 30.5 cm by 30.5 cm. You separate the plates with regular paper, which has a thickness of 0.125 mm and a dielectric constant of 3.7. What is the capacitance of your capacitor? If you connect it to a 12 V battery, how much charge is stored on either plate? =arrow_forward
- Learning Goal: To understand the meaning and the basic applications of pV diagrams for an ideal gas. As you know, the parameters of an ideal gas are described by the equation pV = nRT, where p is the pressure of the gas, V is the volume of the gas, n is the number of moles, R is the universal gas constant, and T is the absolute temperature of the gas. It follows that, for a portion of an ideal gas, PV T = constant. One can see that, if the amount of gas remains constant, it is impossible to change just one parameter of the gas: At least one more parameter would also change. For instance, if the pressure of the gas is changed, we can be sure that either the volume or the temperature of the gas (or, maybe, both!) would also change. To explore these changes, it is often convenient to draw a graph showing one parameter as a function of the other. Although there are many choices of axes, the most common one is a plot of pressure as a function of volume: a pV diagram. In this problem, you…arrow_forwardA-e pleasearrow_forwardTwo moles of carbon monoxide (CO) start at a pressure of 1.4 atm and a volume of 35 liters. The gas is then compressed adiabatically to 1/3 this volume. Assume that the gas may be treated as ideal. Part A What is the change in the internal energy of the gas? Express your answer using two significant figures. ΕΠΙ ΑΣΦ AU = Submit Request Answer Part B Does the internal energy increase or decrease? internal energy increases internal energy decreases Submit Request Answer Part C ? J Does the temperature of the gas increase or decrease during this process? temperature of the gas increases temperature of the gas decreases Submit Request Answerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305960961/9781305960961_smallCoverImage.gif)
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079137/9781305079137_smallCoverImage.gif)
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168284/9781938168284_smallCoverImage.gif)
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399920/9781337399920_smallCoverImage.gif)
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337672252/9781337672252_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning